
A model-driven approach for DevOps
Hugo da Gião

University of Porto, Faculty of Engineering & HASLab/INESC TEC, Portugal
hugo.a.giao@inesctec.pt

Abstract—DevOps is a combination of tools and methodologies
that aims at improving the software development, build and
deploy processes by shortening this lifecycle and improving
software quality. Despite its many benefits it still presents many
challenges when it comes to its ease of use and accessibility. One
of the reasons is the tremendous proliferation of different tools,
languages and syntax which makes the field quite difficult to
learn and keep up to date.

Our goal with this PhD project is to study a model-driven
approach that can abstract the particularities of the different
kinds of tools for the different parts of the DevOps process
(from source code management to deployment). Moreover, we
will also use model-driven techniques to allow users to express
their pipelines without the need to know all the implementation
details (e.g. configuration files) of all the tools they need to use.

Index Terms—DevOps, end-user software development, model-
driven engineering

I. INTRODUCTION

DevOps is a means for software development and deliv-
ery by using various tools and techniques that integrate the
worlds of development and operations [1]. The DevOps word
comes from the combination of Development with Operations.
Indeed, this term is used to describe a culture where these
two realms are no longer separated as in the past, but are
now just one. The integration of these two fields is achieved
through automated development, build, deployment, and mon-
itoring. One of the goals is to achieve reliable, secure, fast
and continuous delivery of software, to improve productivity
in businesses and workers’ well being. Moreover, software
engineers that use DevOps are more resilient and equipped for
fast changes [2]. However organizations and developers face
many obstacles when adopting DevOps, including changes in
the architectural organization, dealing with problems in older
infrastructure and the integration of different DevOps tools [3].
Other problems faced by developers are in learning and using
the specific DevOps tools which can be overwhelming and
can decrease the improvements expected with the adoption of
DevOps [4].

Model-driven engineering (MDE) has been used to cope
with numerous problems in computer science, from complex-
ity to the increase of compatibility between different systems,
to aid in the design process, or in improving the communica-
tion between different teams and team members [5]. Models
are in many cases visual languages, or can be represented as
such, and we believe they are a good approach to remove
the complexity associated with DevOps, making it easier to
adopt and use. Thus, in this project we intend to use MDE to

cope with the complexity of DevOps and to make it accessible
to more users and in particular users with a less strong
background in this kind of technology.

II. STATE OF THE ART

Little work has been done by the research community to
aid DevOps teams in being more productive. One exception
is the work of Piedade et al. which present on the very few
approaches to try to improve Docker Compose1 usability by
proposing a visual language that reduces the complexity and
learning curve to use this tool by equipping users with an
intuitive and functional interface [6].

Some projects have already used MDE for DevOps most
notably to represent the DevOps process and software ar-
chitectures [7], [8], [9], [10]. Despite applying MDE to this
process their approaches most of these often focus on the
management side of software engineering and do not offer
a concrete way of replacing or complementing the use of
textual tools. Nevertheless some projects such as ARGON
generate and replace textual infrastructure, using the high level
specification, more precisely this tool uses UML languages
to generate scripts to automate and manage configuration
management tools and lets users express cloud deployment
operations in a generic approach that can be used for different
providers [11].

III. OBJECTIVES

In this PhD project our initial goal is to better study and
understand some of the problems faced by software engineers
and business when adopting and using DevOps. We will do
so by reaching out to software companies and interviewing
the engineers. We will also discuss with practitioners possible
future directions for DevOps so we can try to cope with them
in our proposals.

Given the proliferation of tools, languages, and syntaxes
related to DevOps, there is a need for improvement in current
DevOps adoptions. One of our goals is to create abstract layers
capable of automating portions of the DevOps’ process and
facilitate the developers’ work. Thus, we will study model-
driven approaches to cope with the diversity in this field.

Beyond improving single steps of the DevOps process we
also have the goal of unifying these steps into an integrated
solution that can facilitate the whole process for organizations

1Docker Compose (https://docs.docker.com/compose) is a tool to define and
run multi container applications, being itself already an improvement over the
use of Docker (https://docs.docker.com), a tool for managing containers.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

https://docs.docker.com/compose
https://docs.docker.com

and developers alike. Thus, we need to study how to integrate
the different steps in a pipeline that can be instantiated by each
team for each project.

Thus, during this PhD project we will answer the following
research questions:

RQ1: How has DevOps evolved over time in practice and
where might it go in the future?

RQ2: To which extent is it possible to design a language
that is capable of abstracting the current DevOps different parts
and cope with future changes and technologies?

RQ3: What is the best methodology to integrate the different
parts of DevOps and turn it into a unified process?

IV. OUR APPROACH

The DevOps process can be divided in 3 parts: i) devel-
opment, ii) build management, and iii) deployment manage-
ment [1]. In this PhD project we will address each of these
parts as well as their integration.

A. Analysis and study of the DevOps process

Our initial goal is to approach industrial partners and find
the different techniques used to implement DevOps as well as
the most notable problems companies have in their daily lives.
We will meet with partner companies’ DevOps teams using
semi-structured interviews [12] to gather initial industrial evi-
dence of the current trends in DevOps. Moreover, we will also
try to understand previous processes they had and what they
think the future might be so we can understand the evolution of
DevOps in practice and prepare our methodologies for future
changes. Although we will start with these two companies, we
will also contact others to collect significant information about
the state-of-the-art of DevOps in industrial context. This work
will give us plenty of information so we can make decisions
based on empirical evidence.

B. Design and implementation of a generic framework for the
DevOps process

DevOps is characterized by an enormous amount of tools
available for each particular task. This implies DevOps teams
need to learn quite some tools, languages, notations to be
able to define concrete DevOps processes. This is quite
challenging given the amount of tools, not stable as tools
are created/changed frequently, and difficulty to integrate new
members as there are too many concepts to be learned before
starting to work. Thus, our goal is to create a framework
capable of specifying the different parts of the DevOps process
independently of the concrete technological choices of each
DevOps team.

To this end we will study model-driven methodologies and
propose a meta-model that can be used to generate different
models for the three parts of the process we mentioned
before [1]. This meta-model will need to include concepts
from development, build management and deployment. Each
of these models can then be instantiated in the different
tools. For instance, given a model for build management,
one can instantiate it in tools such as Gradle or Ant. The

intent is that our framework can generate the necessary code
or configuration files based on the model for existing tools,
or even for tools that may appear in the future, being only
necessary to create the necessary mapping between the model
and the new tool’s concrete syntax.

Such a framework will allow DevOps teams to have a single
specification of the different parts of the process and generate
concrete instances of the tools they choose for each project or
even in different periods of time.

Each of the models and the meta-model will be validated
using case studies collected in the initial part of this project.
This validation will be mostly an applicability validation, that
is, we will evaluate if the models are sufficient to represent a
significant amount of tools. After this validation we can create
a meta-model. These (meta-)models will then be implemented
using a framework such as Epsilon [13] and empirically
validated with DevOps teams.

C. DevOps pipelines without concrete technologies in mind

In this part of the work we will study how to integrate the
different steps of the DevOps process in a unified process.
Each team has their own way to integrate the different parts
of the process and thus we need to find a way to allow them
to define arbitrary combinations of the DevOps steps.

We will study how to extend the previously proposed mod-
els to include concepts from pipelines. We will also study other
languages such as the Business Process Modeling Notation
(BPMN) which is quite used in different industrial contexts
and thus may be more appealing for industrial practitioners.

Once more, the language we will propose will be validated
for its completness by applying it to several case studies.
Nevertheless, we will evaluate it empirically with practitioners
so we can assess its usability (efficiency, effectiveness and
satisfaction) by real users.

V. CONCLUDING REMARKS

The use of DevOps is currently quite standard in industry.
However, despite its benefits, it poses quite some challenges
as more as more tasks are asked to DevOps teams. In this
PhD project we will study how to use MDE to cope with this
growing complexity and how MDE can aid DevOps teams
being more effective and efficient.

ACKNOWLEDGMENTS

This work is financed by the ERDF - European Regional
Development Fund, through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme under the Portugal 2020 Partnership Agreement,
and by National Funds through the FCT - Portuguese Foun-
dation for Science and Technology, I.P. on the scope of the
UT Austin Portugal Program within project BigHPC, with
reference POCI-01-0247-FEDER-045924.

REFERENCES

[1] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[2] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in
Technology Organizations, ser. ITpro collection. IT Revolution
Press, 2016. [Online]. Available: https://books.google.pt/books?id=
ui8hDgAAQBAJ

[3] G. B. Ghantous and A. Q. Gill, “Devops: Concepts, practices, tools,
benefits and challenges,” in PACIS, 2017.

[4] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker
development: A large-scale study using stack overflow,” in Proceedings
of the 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), ser. ESEM ’20. New
York, NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3382494.3410693

[5] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[6] B. Piedade, J. a. P. Dias, and F. F. Correia, An Empirical Study on
Visual Programming Docker Compose Configurations. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3417990.3420194

[7] A. Colantoni, L. Berardinelli, and M. Wimmer, DevOpsML: Towards
Modeling DevOps Processes and Platforms. New York, NY, USA:

Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3417990.3420203

[8] F. Bordeleau, J. Cabot, J. Dingel, B. S. Rabil, and P. Renaud, “Towards
modeling framework for devops: Requirements derived from industry
use case,” in Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment, J.-M.
Bruel, M. Mazzara, and B. Meyer, Eds. Cham: Springer International
Publishing, 2020, pp. 139–151.

[9] L. Burgueño, F. Ciccozzi, M. Famelis, G. Kappel, L. Lambers,
S. Mosser, R. F. Paige, A. Pierantonio, A. Rensink, R. Salay,
G. Taentzer, A. Vallecillo, and M. Wimmer, “Contents for a model-
based software engineering body of knowledge,” Software and Systems
Modeling, vol. 18, no. 6, pp. 3193–3205, 12 2019. [Online]. Available:
https://doi.org/10.1007/s10270-019-00746-9

[10] J. Cabot. [Online]. Available: https://modeling-languages.com/
devops-modeling-workshop/

[11] J. Sandobalı́n, E. Insfran, and S. Abrahão, ARGON: A Tool for Modeling
Cloud Resources, 06 2018, pp. 393–397.

[12] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

[13] L. Tratt and M. Gogolla, Theory and Practice of Model Transformations,
01 2010, vol. 6142.

https://books.google.pt/books?id=ui8hDgAAQBAJ
https://books.google.pt/books?id=ui8hDgAAQBAJ
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1145/3417990.3420194
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1007/s10270-019-00746-9
https://modeling-languages.com/devops-modeling-workshop/
https://modeling-languages.com/devops-modeling-workshop/

	Introduction
	State of the Art
	Objectives
	Our approach
	Analysis and study of the DevOps process
	Design and implementation of a generic framework for the DevOps process
	DevOps pipelines without concrete technologies in mind

	Concluding remarks
	References

