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Abstract

Linear programming is a mathematical optimization technique used in numerous fields including math-

ematics, economics, and computer science, with numerous industrial contexts, including solving optimiza-

tion problems such as planning routes, allocating resources, and creating schedules. As a result of its wide

breadth of applications, a considerable amount of its user base is lacking in terms of programming knowl-

edge and experience and thus often resorts to using graphical software such as Microsoft Excel. However,

despite its popularity amongst less technical users, the methodologies used by these tools are often ad-hoc

and prone to errors.

Block-based languages have been successfully used to aid novice programmers and even children in

programming. Thus, we created a block-based programming language termed LPBlocks that allows users

to create linear programming models using data contained inside spreadsheets. This language guides the

users to write syntactically and semantically correct programs and thus aid them in a way that current

languages do not.

To assess the validity of LPBlocks we used it to express numerous and varied linear programming prob-

lems. Further, we implemented LPBlocks and contacted possible participants of different backgrounds,

designed and ran a study to collect data referent to their experience with our tool and language. We then

used those insights to evaluate LPBlocks and to use it as a marker for possible improvements.

Keywords: linear programming, operations research, optimization, block-based languages, visual lan-

guages, Blockly…
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Resumo

Programação linear é um conjunto de técnicas de otimização matemática utilizada em várias áreas estas

incluem matemática, economia, ciências da computação e usos em contextos industriais, incluindo pla-

near rotas, alocar recursos e planear horários. Como resulta das suas aplicações variadas uma grande

quantidade dos seus utilizadores não possuem conhecimentos de programação e por isso utilizam soft-

ware gráfico como o Microsoft Excel. Apesar da sua popularidade este software utiliza metodologias ad-hoc

e propicias a erros.

As linguagem de programação por blocos tem surgido nos últimos anos com o intuito de ajudar pro-

gramadores iniciantes, tendo mesmo aplicações no ensino de crianças. Sendo assim nos criamos uma

linguagem de programação pro blocos que utiliza dados contidos em folhas de calculo para criar mode-

los de programação linear chamada LPBlocks. Esta linguagem guia utilizadores na criação de modelos

semanticamente e sintaticamente corretos.

Para avaliar a validade de LPBlocks nos implementamos vários problemas utilizando a mesma. Pos-

teriormente implementamos esta linguagem e utilizamo-la num estudo com utilizadores de vários níveis

de experiência. Depois utilizamos a informação recolhida durante o estudo para avaliar LPBlocks e propor

melhorias.

Palavras-chave: programação linear, investigação operacional, linguagens de blocos, linguagens visu-

ais, Blockly …
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1
Introduction

This chapter presents some background information about the field of LP, its uses as well as some of

its underlying problems and approaches used in different fields to tackle those problems this is done in

Subsection 1.1. In Subsection 1.2 we describe some of our scientific and technical contributions. Further in

Subsection 1.3 we pose several questions that we intend on answering within this work and in Subsection

1.4 we describe the organization of this document.

1.1 Motivation

LP is a mathematical optimization technique used to find the best possible outcomes in problems specified

by linear specification constraints. It originated as a discipline during the 1940s as an effort to tackle com-

plex problems associated with wartime operations. These methods have since found uses in many areas

in fields such as mathematics, computer science, business, economics, and engineering and problems

such as planning, routing, scheduling, assignment, and design [13].

There are many steps involved in the LP workflow, the first of them is understanding the problem at

hand, what value does the user want to know, what does this value depends upon. The next steps are defin-

ing the decision variables according to the problem, writing an objective function, defining the constraints,

writing the constraints in terms of decision variables, and adding nonnegativity to the constraints [1].Cur-

rently, many tools support this process, these tools cater to both advanced users and less technical users.

The versatility of LP in formulating all sorts of problems lends itself useful in many industrial contexts from

schedule optimization to route planning. Since many of its users have little to no programming or technical

knowledge, visual software such as Microsoft Excel is often the preferred tool when it comes to specifying

and solving this type of problem [10].

Despite its widespread use end-users still face some obstacles when trying to leverage these tools since

existing libraries and tooling often require some knowledge of programming to achieve desired outcomes

1



CHAPTER 1. INTRODUCTION

(as seen in tools like MATLAB 1 and SAS/OR 2 and various libraries such as Googles OR-Tools 3 and

PuLP 4 and more visual tools often use spreadsheet or spreadsheet-like software with the methodology

and problems underlaying its use, learning LP also comes with some difficulties that have been previously

mitigated with the use of technology [6].

Spreadsheet software such as Excel allows users to formulate and solve optimization and linear and

nonlinear optimization problems using algorithms such as simplex, generalized reduced gradient, and

evolutionary algorithms [23] [24]. One of the reasons motivating the use of spreadsheets for LP and

optimization tasks stands in the prevalence of spreadsheet software in business settings and its use in

tasks related to the LP and optimization process. These tasks include data gathering, transformation,

and analysis. Their use of the aforementioned software allows users to use maintain their habits and

previous knowledge and reduce the learning curve for such tasks. However similarly to other Excel tasks

this methodology is also ad-hoc and could cause problems to novice users due to input errors at the

moment of inputting the variables as well as other errors in the spreadsheet building process due to its

methodology. Some of the underlying problems include adding constraints and optimization function from

the spreadsheet to the solver, the difficulty in visualizing the complete model, not being able to define

constraints by its columns, the inability to call variables by name instead of its cell position, and lack of an

interactive model and building process.

Spreadsheets are widely used across the enterprise market and spreadsheet software such as Excel

is used for numerous tasks such as data loading, transformation, and analysis and in fields such as Fi-

nance and Engineering. However despite that Excel, the most widespread of spreadsheet software, being

popular to the point that Excel formulas are the most used programming language in the enterprise mar-

ket [17], possesses a methodology that is ad-hoc and lacking when it comes to robustness, re-usability,

and other features available for users of more standard programming languages. Some of the problems

it encompasses are the missing concept of types and types checking which can lead to an inappropriate

data flow between computation steps [11] and another being lack of expressiveness which leads to harder

traceability and spreadsheet maintenance [11].

Studies show that the use of programming languages, block-based or not, often endears students

and represents one of the main obstacles when learning computer science [19]. Taking the precedent into

account it is paramount to make visual languages the most appealing, intuitive, and easy to use as possible.

Some projects have used visual languages to tackle aspects of LP, however, the majority of them focus on

the educational and teaching of mathematical aspects of LP [12, 22]. The few existing projects focusing

on the applied side of LP tend to be several decades old and have dated and unappealing interfaces and

do not make use of recent advances in the field of visual languages and human-centered computing [14,

25].

Numerous projects have applied visual languages to various areas of computing generally focused
1https://www.mathworks.com/products/matlab.html
2https://www.sas.com/en_us/software/or.html
3https://developers.google.com/optimization
4https://pypi.org/project/PuLP/

2
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CHAPTER 1. INTRODUCTION

on increasing accessibility of novice and non-technical users as well as teaching. A considerable amount

of these languages use the Blockly framework for their implementation [20]. These languages include

BlockPy [3], a web-based platform that lets the user write and run Python code using a block-based

language, and Scratch [16], a block-based visual programming language and educational tool mostly

targeted at children.

1.2 Contributions

In this section, we list our contributions in both scientific and technological terms a well as scientific

publications. Our contributions from this thesis focused mainly on the creation of a visual, block-based

language capable of expressing LP problems and a web application that allows users to build, debug and

run models using our language. The scientific publications associated with our work are the following:

• Linear Programming Meets Block-based Languages Hugo Gião, Rui Pereira, Jácome Cunha IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC’21) I

• Towards a Block-based Language for Linear Programming? Hugo Gião, Rui Pereira, Jácome Cunha

12th National Symposium of Informatics (INForum’21) II

• LPBlocks implementation: source code 5, tool 6

1.3 Research questions

Considering our motivation and goals our thesis aims to answer the following questions:

• RQ1 - Can we use block-based languages to represent LP formulations. - Currently the tools used

in both education and industry to create LP models either require pre-existing programming knowl-

edge, use ad-hoc methodologies, or can not be used for formulating general models. Since LP has

several uses improving its process for less technical users could be beneficial in improving their

productivity and capabilities.

• RQ2 - Will using a block-based language provide users an easier environment for LP. - Even if

such a language is possible, the language wouldn’t be inherently better than the existing solutions,

to evaluate the created language we need to test it with users with no experience with the said

language.
5https://github.com/h4g0/blockly-spaces
6https://lpblocks.herokuapp.com/

3
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CHAPTER 1. INTRODUCTION

1.4 Document organization

To present our work, the document is organized as follows:

• Chapter 2 showcases the state of the art when it comes to end-user tooling for LP, visual and

block-based languages, and projects that bridge visual languages and LP.

• Chapter 3 In this Chapter we showcase LPBlocks, a block-based language capable of expressing

LP models. We explain how the data is received, the different blocks, and how to use them.

• Chapter 4 In this Chapter we elaborate on the implementation details and compilation process for

our language. We also showcase our interface and its features.

• Chapter 5 In this Chapter to showcase the power and wide applicability of our language by using it

to solve a selection of problems taken from class notes and operations research textbooks.

• Chapter 6 To not only prove that our language can be used to formulate LP problems we executed

a user study in which the users after a brief tutorial solve several LP problems using our tool and

then answer a survey where they share their experiences.

• Chapter 7 Here we analyze the results of our work and purpose some possible improvements and

continuation to this project.

4
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2
State of the art

In this chapter, we expose a variety of tools related to our work. To do so we started by researching capable

and some of the more user-friendly tools for operations research and LP purposes this is the work done in

Section 2.1. In the same Section after exposition the different solutions and some of their methodologies,

these tools are not necessarily the most popular and widely used in industry for the purposes above stated

and are not necessarily the most widely used since the more programmatic methodology is often preferred.

We proceed to do a comparison and comment on which would be the most appropriate for different user

bases according to different aspects such as cost, price, and features and then discuss some of their

shortcomings and possible solutions.

In Section 2.2 we present some existing visual languages projects, these projects tackle various devel-

opment and computing areas such as data science, application creation, and spreadsheet manipulating

with applications in both enterprise and education markets.

Then in Section 2.3 we present some works that apply visual languages and human-centered com-

puting to the field of LP. The projects approached in this Section focus on both educational and applied

aspects of LP. Some of them in helping novice users use and learn LP and others for more experienced

users.

2.1 Operations research tooling for end users

2.1.1 Excel

Microsoft Excel is a spreadsheet software developed by Microsoft with support for various platforms such

as Windows, macOS, Android, and iOS it boasts many features related to manipulating and analyzing

spreadsheets as well as various features related to business, engineering, and data analytics. Excel is

5



CHAPTER 2. STATE OF THE ART

closed source and paid for all users except students1.

Excel2 allows for formulating and successive solving of LP problems using its add-in solver. Using

excel for this task comes with some caveat, one of them being that the methodology used for adding

the constraints, variables, and the objective is ad-hoc, its interface not being user friendly, not having

predefined templates for specific use cases and the solver not being native to Excel.

To be able to solve LP problems in Excel first we need to download the Solver Add-in to do so first go to

File > Options click Add-Ins thenManage and Add-ins,click Go and select the Excel solver add-in.

Having the solver add-in installed we can move to the next step, for demonstration purposes we will

be using a tablet manufacturing example, this problem states that a tablet manufacturer has to optimize

the production of two tablet models to maximize profits. This example was sourced from youtube [15].

To solve this problem we first define the problem variables, constraints, and optimization function inside

an Excel spreadsheet as seen in Figure 2.1. In this case, we define the requirements in terms of Labour

hours, Chips sets and Electronic components for each of the models as well as their availability. We

then define two variable one called Pro Model units and another called Mini Model units indicating

the number of units of each model to be produced. After we define the number of units for each of the

requirements as the requirements for each of the model multiplied by the number of produced units, we

then define the constant Unit Profit for both models and the objective function Total profit defined as

being the sumproduct of each of the units with its profit.

Figure 2.1: Definition of variables and constraints in the spreadsheet

After defining the problem inside the Excel spreadsheet we open the solver add-in by clicking in Data

> Sovler inside the Excel menu as seen in figure 2.2. We then are prompted with a window in which

we add the different variables, constants, objective function and choose from one of the three available

solvers as seen in figure2.3.

Figure 2.2: Find the solver option in excel

After solving our problem the Excel solver add-in outputs both the solutions seen in figure 2.4 and a

report detailing the problem specification as well as some of the steps and details about the algorithm

used, seen in 2.5.
1https://www.microsoft.com/en-us/microsoft-365/p/excel/cfq7ttc0k7dx?activetab=pivot%

3aoverviewtab
2https://office.live.com/start/excel.aspx
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Figure 2.3: Adding variables,constraints and defining the objective in the excel solver.

Figure 2.4: Results outputted from the solver into the spreadsheet.

Figure 2.5: Excel LP report

7
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2.1.2 SAS/OR

Figure 2.6: SAS/OR graphical modelling capabilities.

The SAS/OR software allows its users to use various state of the art optimization, simulation, and

scheduling algorithms and software. User interfaces and functionalities vary greatly for the different SAS/OR

features this are:

• Mathematical optimization Users can make use of this feature using an intuitive algebraic

language3. On a technical aspect, the SAS/OR software includes a diverse array of features this

includes:

– Aggressive presolvers capable of reducing problem sizes3.

– Multithreading and other technologies for improved performance3.

– Decomposition algorithm for linear and mixed-integer programming3.

– Multiple network diagnostics and optimization algorithms3.

– Parallel hybrid global/local search optimization, including multi-objective optimization3.

– Constraint programming capabilities with scheduling and resource features3.

• Discrete event simulation For this feature SAS/OR provides it’s users friendly interfaces.When

using this feature users get:
3https://www.sas.com/pt_pt/software/or.html#m=features
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– Graphical modelling capabilitites3 as seen in figure 2.6.

– Support for large models and experiments.

– Hierarchical modeling: compound blocks and submodel blocks3.

– Search facility enables the search of all blocks in the model3.

– Integration with SAS and JMP3.

• SAS/OR users have as well access to an environment to track, manage and plan project and

resource schedules3. When using this environment users have access to:

– Critical Path Method and CPM-based resource-constrained scheduling3.

– Versatile reporting, customizable Gantt charts and project network diagrams3.

– Calendars, work shifts, and holidays for determining resource availability and schedules3.

– Decision analysis3.

– Bill of material (BOM) processing3.

This software is used across various industries and companies such as Nestlé, Volvo, and Honda.

SAS/OR is paid and closed source with a free trying period and discounted or free for educational pur-

poses4.

4https://www.sas.com/pt_pt/software/how-to-buy/request-price-quote.html

9

https://www.sas.com/pt_pt/software/how-to-buy/request-price-quote.html


CHAPTER 2. STATE OF THE ART

2.1.3 NCSS

(a) Problem construction inside the spreadsheet.

(b) Adding the problem to the solver.

(c) Solver output.

Figure 2.7: LP problem solving in NCSS

NCSS is a statistical and graphical program with linear and mixed integer programming capabilities,

10
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it uses Tableau or Bounds for data visualization and analysis5.

The NCCSS software has many use-cases and features for operations research this includes:

• LP - NCSS allows for the use of LP for the maximization or minimization of a linear objective function

subject to several constraints5.

• Mixed Integer Programming - This technique builds upon LP adding the condition that at least

one of the variables can only take on integer values5.

• Quadratic Programming - This technique is widely used in operations research and optimization

problems. It differs from LP since it optimizes for a quadratic optimization function5.

• Assignment - The purpose of the assignment algorithm is to assign objects to the same number

of jobs while minimizing the total cost. This problem is solved using the Mixed Integer programming

algorithm5.

• Maximum Flow - The Maximum Flow problem involves for a given network finding the highest

feasible flow from the Source, a vertex with no incoming edges to Sink, a vertex with no outgoing

edges. In this problem, the flow of a given edge represents a non-negative weight.NCSS uses LP to

solve this problem5.

• and others such asMinimum Cost Capacitated Flow,Shortest Route, Transportation and

Transhipment.

To solve LP problems using the NCSS software users must define the variables in a spreadsheet as

seen in figure 2.7a, and subsequently indicate to the solver which are the columns represent the variables,

constraints, and logic as seen in 2.7b. When compared with excel NCSS uses a more structured approach

seeing that all variables logic columns and constraints must be defined in specific columns and doesn´t

use a point and drag method. The reports seen in 2.7c generated by the solver are similar to the ones

generated by excel.

Despite improving on the Excel methodology, the NCSS methodology could be improved with a more

interactive and user-friendly approach to the problem definition.

Pricing wise NCSS is paid costing for all users but possesses a free trial6.This software is also closed

source.

2.1.4 MATLAB

MATLAB or matrix laboratory is a software tool supporting a visual environment created for iterative analysis

and design process and a programming language that expresses matrices and arrays directly as well as
5https://www.ncss.com/software/ncss/operations-research-in-ncss/#Technical
6https://www.ncss.com/online-store/
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a live editor and the capability to output text, graphics, and formatted notebooks 7. The main appeal

behind MATLAB stands from it requiring lower configuration and setup compared to other programming

environments, other factors distinguishing MATLAB from the other alternatives stand from its performance,

state of the art algorithms and scalability, its ease of integration, and industry-focused features such as it’s

support for MODEL-based design and easy deployment with business systems. One of it’s biggest setbacks

stands from its pricing at time of writing it does not have any free tier, MATLAB is closed source as well7.

This software has various uses for operations research some of them with of the shelf graphical capa-

bilities, some examples of operations research tasks accomplished using MATLAB are:

• Aircraft Boarding Process Flow as sen in figure 2.8, this image illustrates some of the graphical

modelling capabilities available to MATLAB users, it shows that users can model complex tasks

using highly intuitive and expressive visual language.

• Optimization of Shared Resources in a Batch Production Process.

• Modeling a Kanban Production System.

• Modeling Machine Failure.

• Job Scheduling and Resource Estimation for a Manufacturing Plant.

• and many more.

Figure 2.8: Aircraft boarding process flow using MATLAB modelling capabilities

Users can use MATLAB to model and solve LP problems using the 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function.Users can use

this function by expressing both variables and constants in a matrix form.

As an example the following inequalities constraint:
7 https://www.mathworks.com/products/matlab.html
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𝑥 (1) + 𝑥 (3) ≤ 2 (2.1)

𝑥 (1) + 𝑥 (2)/4 ≤ 1 (2.2)

𝑥 (1) − 𝑥 (2) ≤ 2 (2.3)

−𝑥 (1)/4 − 𝑥 (2) ≤ 1 (2.4)

−𝑥 (1) − 𝑥 (2) ≤ −1 (2.5)

−𝑥 (1) + 𝑥 (2) ≤ 2 (2.6)

Can be expressed in MATLAB in the following way:

1 A = [1 1

2 1 1/4

3 1 -1

4 -1/4 -1

5 -1 -1

6 -1 1];

7

8 b = [2 1 2 1 -1 2];

After defining the inequalities constraints the next step is to define the objective function, for this

example, the following function will be used:

−𝑥 (1) − 𝑥 (2)/3 (2.7)

Defined in MATLAB:

1 f = [-1 -1/3];

After defining the inequalities and objective function the next step is to call with 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function:

1 x = linprog(f,A,b)

We then get the optimal solution found by the solver:

1 x = 2 x 1

2 0.6667

3 1.3333

The 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function acceps equality constraints as an example the 𝑥 (1) +𝑥 (2)/4 = 1/2 constraint

can be added to our model:

1 Aeq = [1 1/4];

2 beq = 1/2;

3

4 x = linprog(f,A,b,Aeq,beq)
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The 𝑙𝑖𝑛𝑝𝑟𝑜𝑔 function can accept as well lower and upper bound constraints and different solver

algorithms and parameters.MATLAB contains more advanced features such as modeling problems that

can be formulated in a problem-based approach and more complete outputs.

2.1.5 LINGO and What’sBest!

Figure 2.9: Lingo user interface

LINGO and What’sBest! are two tools created by the LINDO SYSTEMS INC to solve LP using data

contained in spreadsheets, these tools constitute two different approaches to solve this problem. While

LINGO uses the data in spreadsheets and uses an SQL like language to express the problem and call the

solver, What’sBest! defines the problem inside an excel spreadsheet and calls the solver using a GUI.

What’sBest! offers users a form layout within spreadsheets where users can define variables, con-

straints, and optimization functions, to finalize the problem definition and call the solver. Users then use

the GUI provided by the excel addon to define the different variables, constraints, and functions in the

spreadsheet cells as well as choosing the optimization solver and different report options8.

LINGO whose user interface can be seen in 2.9 is an optimization modeling software for linear, nonlin-

ear, and integer programming. Lingo is a comprehensive tool designed to make solving various optimization

problems simpler, faster, and more efficient. This tool provides an integrated package comprising a power-

ful language capable of expressing various optimization models, editing problems, and fast solvers. LINGO

allows for reading data from spreadsheet files using its SQL like language9.

2.1.6 Summary and comparisons

In this Section we summarized this chapter previous findings and compare the different solutions according

to five different categories, this being:
8https://www.lindo.com/index.php/products/what-sbest-and-excel-optimization
9https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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• Cost: We compare the different tools according to their pricing for both enterprise, education, and

student users.

• Code availability: This metric compares the different tooling according to the availability of their

code to the general public.

• User interface: In this Section we compare the user interfaces available for each of the different

tools, the tasks end users can accomplish using them.

• Ease of use: This metric is used to compare the ease of use of the solutions.

• Features: We use this metric to compare the applications in terms of available features.

Excel Paid with free trial and free student tier
SAS/OR Paid with free trial and free student tier

NCSS
Paid with free trial and discounts for education and government
use

MATLAB
Paid with heavy discounts for home, education and student users
and free trial

Lingo and What’sBest! Paid with free trial with education discounts

Table 2.1: Different solutions comparison cost

Looking at table 2.1 we can see that all of the tools above carry costs for enterprise users, however all

of them have free trials, Excel and SAS/OR are free for students and all of the others are heavily discounted

for students.

Excel Closed source
SAS/OR Closed source
NCSS Closed source
MATLAB Closed source
Lingo and What’sBest! Closed source

Table 2.2: Different solutions comparison when it comes to code availability

All of the analyzed tools are closed source as seen in 2.2 .

Excel Yes for LP problems and most tasks

SAS/OR
Possesses a a graphical user interface for some operations re-
search tasks but LP can only be done using their algebraic lan-
guage

NCSS Yes similar to excel
MATLAB Like SAS/OR has some GUI’s but not for LP
Lingo and What’sBest! Yes very similar to excel

Table 2.3: Different solutions comparison when it comes to User interface
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Excel
Numerous features with many spreadshet related uses ,lacking in
terms of operations research related features when compared with
the other solutions,few LP solvers and options-

SAS/OR Numerous optimization and operations research features

NCSS
Numerous features related to linear and mixed integer program-
ming,various solvers and options.

MATLAB
Numerous operations research features and a a wide array of tools
and a general purpose programming language.

Lingo and What’sBest! Numerous linear and mixed integer tools.

Table 2.4: Different solutions comparison when it comes to fearures

Excel
Relativly easy to use for seasoned excel users,requires the instala-
tion of aditional adons and uses a error prone methodology

SAS/OR
Some optimization tasks area accessible to end users but others
such as LP require some knowledge of mathematical notations and
some programming

NCSS
Process very similar to excel with a better and less prone to errors
interface

MATLAB

Some tasks can be accomplished without programming but simi-
larly to SAS/OR requires programming knowledge for others such
as LP, however users with a mathematical background should be
familiar with significant portions of the syntax.

Lingo and What’sBest!
The difficulty level of lingo sits between SAS/OR and excel and
What’sBest! has a similar workflow to excel.

Table 2.5: Different solutions comparison when it comes to ease of use

When it comes to user interfaces users have different options according to their needs we can see

in tables 2.3, 2.4 and 2.5 that tools such as Excel, NCSS, and What’sBest! would make a better choice

for users with little to no programming experience wanting to solve LP problems. For more experienced

users wanting more freedom and capabilities when solving LP problems tools such as MATLAB, Lingo

and SAS/OR would be a preferable choice and for users wanting to solve more advanced optimization

problems, SAS/OR or MATLAB would be the tooling of choice.

However, despite the array of features offered by the different solutions and the availability of user

interfaces for select tasks there are still improvements that could be made in the usability, flexibility,

and reliability of these interfaces. More notably various interfaces used for LP tasks such as the ones

used in Excel, NCSS, and What’sBest! assume that users know the various steps involved in LP problem

solving, the Excel tool has a problematic, ad-hoc, and prone to errors methodology involving a considerable

amount of pointing, clicking, and dragging. Other tools such as NCSS and What’sBest! improve on the

situation by having the references to the cells done manually however none of the previous tools have

proactive measures to avoid user errors such as interactively showing the different constraints, variables,

and optimization as the model is being constructed. Some of the more useful tools such as Excel lack

some more advanced features such as more advanced solvers and options.
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2.2 Frameworks and notable Visual Languages projects

2.2.1 Blockly

Figure 2.10: A simple Blockly program.

Blockly is a google created library created to build visual applications that output syntactically correct

code. This library is written in pure JavaScript, is 100% client-side and without server-side dependencies,

can be used with all major browsers, and is highly customizable and extendable10.

Various projects have been built using this technology,having found success particularly in the educa-

tional space, this applications include Blockly Games11,code.org12, MIT App Inventor13 and BlockPy14.

The creation of this library was greatly influential to the field of visual programming languages not

only due to the projects that were build using it but as well as the insights gained into the difficulties and

mistakes made when creating visual programming languages some of the mistake noticed by the google

team where:

• The google team noticed users found difficulties distinguishing between conditional and loop blocks

due to their similar styling. To mitigate this problem the google team moved the conditional block

to the logic block.

• Adding borders to blocks is fundamental for their distinction [9].
10https://developers.google.com/blockly
11https://blockly.games/
12https://code.org/
13https://appinventor.mit.edu/
14https://think.cs.vt.edu/blockpy/
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• Avoiding syntax errors is one of the key features of visual programming languages, in earlier Blockly

implementations users could forget to connected blocks due to them being close together, this

bug is sometimes unnoticeable to the human eye. To solve this kind of problem in successive

implementations by connecting unattached connector pairs reasonably close to each other [9].

• Non-intuitive syntax, often the syntax of blocks didn’t convey its meaning and utility, an example of

this was that some blocks that could be placed inside others don’t have a shape that conveys so.

Another example of syntactic confusion was the use of a straight arrow and turn arrows to symbolize

a character turning right, this proved itself confusing for some users and the problem was mitigated

by using a circular arrow.

• Users not reading instructions was also a problem when dealing with students the google team

noticed that independently of font-size, color, and placement users continuously closed the pop-

ups without reading, to try to solve this problem the google team implemented pop-ups that would

close only when the task is completed [9].

Understanding some of the problems found when bringing some of the Blockly projects to end-users

will be of use for any project related to the creation, study, or implementation of visual languages.

2.2.2 BlockPy

Figure 2.11: Hello World program using the BlockPy interface

The BlockPy project is a web-based, open-access Python programming environment made for introductory

programming and data science education. This project came by due to the increasing need that profes-

sionals and non computer science students feel to learn computer science related skills and due to the

contextualization of introductory computer science education focusing mostly on game design and me-

dia computation thus alienating potential learners due to a perceived pointlessness to their professional

activity. Since data science skills such as data processing are widely needed across a variety of fields [3].

The choice of python for this educational tool because of it’s explicit syntax, strong support for data

science libraries such as pandas, Matplotlib, and scikit-learn, despite its ease of use when compared with
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other computer languages using an intermediate visual language that allowed for a view of the entire user

interface. This was found to improve the usability of the language for novice programmers. One feature

that distinguishes BlockPy from other projects allowing users to program in Python using visual languages

is the possibility of freely oping between text and visual programming, this feature was found to improve

the transition process between the two types of languages [2].

Accessibility is one of BlockPy’s project goal for this reason BlockPy is an easily accessible web-based

platform, all of its code is open source and leverages an array of open-source libraries. To avoid excessive

broadband use BlockPy the python code is run locally, to do so they used a modified instance of the Skulpt

JavaScript library capable of parsing and compiling python code to JavaScipt.The visual language portion

of this project was done using the Blockly library [3].

Beyond the previously said this project made other contributions to the visual programming field such

as adaptative guidance this adds to the user experience by providing more adapted feedback

2.2.3 MIT app Inventor

Figure 2.12: Mit app Inventor user interface.

The MIT App Inventor whose user interface can be seen in figure 2.12 is an educational platform that

uses android app development to teach introductory computer science concepts. This concept was born

from the observation that smartphones play an intrinsic role in our everyday lives however the majority

don’t understand how the technology they use works. This project tries to solve this problem by providing

a more user-friendly approach to building smartphone apps. The interface uses a drag and drop approach

for different components and the Blockly library for the program logic [21].
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This project’s contributions to the user interface and visual programming fields stem from the real-

world context and applications instead of more traditional programming aspects such as loops, arrays,

operators, and conditionals [21].

2.2.4 Outsystems

(a) Outsystems platform GUI creation environment (b) Outsystems platform logic visual language

Figure 2.13: Outsystems platform visual languages

Outsystems was funded in 2001 in Lisbon, Portugal, and is considered one of the few Portuguese and

has current headquarters in Boston, Massachusetts with offices in 11 countries as of 2019. Outsystems is

a leader when it comes is a low-code platform in the enterprise market being used by companies in fields

such as banking, healthcare, insurance, transportation, and energy15.

The Outsystems platform allows users to develop web applications using an off the shelf visual program-

ming language, this platform diverges from other no-code platforms in its usefulness due to its increased

potential and wider reach associated with the possibility of using a hybrid visual and textual development

environments in the same project. This approach allows then for faster development by accelerating the

critical phases of software development using their drag and drop approach for creating GUI seen in figure

2.13a and flux-based language for some of the logic as seen in figure 2.13b, while preserving flexibility and

features associated with traditional text-based software development by allowing its users to complement

the visual language16.

This platform comprises numerous advanced features such as a modern, collaborative ide , integration

with more than 275 enterprise systems such as MySql, Google Drive, and SAP, numerous templates and

capabilities to create beautiful user interfaces, fast deployment allowing users to deliver reactive web apps

both as apps with automatic packaging and as Progressive Web Apps(PWA). The use of this platform allows

as well for building enterprise-grade applications, avoiding technical debt due to constant monitorization

and enforcement of best practices, automatic security and continuous monitoring, and cost control with

the use of real-time data16.
15https://www.outsystems.com/case-studies/
16 https://www.outsystems.com/
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2.2.5 Visual language for spreadsheet processes

(a) Load previous process or create new one (b) Edit process

Figure 2.14: Edition,creation and loading or spreadsheet processes.

This spreadsheet process creation software is a tool that allows users to define Excel processes using

a flow-based language,it came to be from the need to improve the methodology used in the spreadsheet

creation process. The methodology behind this tool uses a flux-baxed,seen in figure 2.14b language to

express some of the different steps involved in the spreadsheet creation process [18] . It uses Electron,

React, Redux, and other web technologies for the front-end and back-end and some back-end tasks such

as opening and reading files. The interaction with Excel is done using the Microsoft interop Excel API 17,

this API allows for the reading and creation of Excel workbooks suing many of its features such as Graphs,

formulas, and operations such as sorting and filtering data.

This tool uses a flow-based language made by different cells each one representing an Excel operation

at the moment the tool implements the following operations:

• Import CSV/Import XLSX - Loads data from CSV and XLSX files.

• Export CSV/Export XLSX - Writes data to CSV adn XLSX files.

• Filter - Allows for the filtering of up to three columns.

• Sort - Allows for the sorting in ascending or descending order of up to three columns.

• Pivot table - Pivots a table.

• Chart - Allows for the creation of both bar and pie charts.

• Select - Selects a column.

• Add column - Creates new column.
17https://docs.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.application?

view=excel-pia
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• Rename column - Renames column.

Currently, it allows for the creation, saving, and loading of processes saved in Json files as seen in figure

2.14a, with some basic features such as loading data from and saving to both CSV and xlsx files, use some

Excel features such as Filter, Sort, Pivot table, and Charts. This tool represents excel processes graphically

using a flux-based language, to create a process users can drag and drop the wanted processes.

This tool used in an industrial case study to explore the usefulness of visual programming languages

as a replacement for standard spreadsheet software in some of its most commonly used tasks, this study

was done by the quality department at Bosch Car Multimedia Portugal, this department uses spreadsheets

to analyze data exported from an SAP ERP system [17]. These spreadsheets contain data reporting defects

claims of the companies produced parts and it is repeated once a week. With the use of this tool, their

spreadsheet construction process was made explicit and allowed for greater quality assurance and other

benefits such as improved employee productivity [17].

2.3 Projects involving visual languages and LP

2.3.1 A graphics interface for linear programming

Figure 2.15: Integrated LP System Diagram proposed by the paper

This paper [14] introduces an interface for a software system that guides users when graphically

building LP models instead of using a mathematical formulation. Their interface boasts multiple features

such as hierarchical decomposition, multiple model representations, alternative formulation approaches,

the use of model templates, and database and model management facilities.

The authors of the paper identified the following steps to solve a LP problem, investigation, model

formulation, data management, algorithmic solution and report generation and analysis, these steps can
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Figure 2.16: Energy problem represented in LPFORM

be seen in the diagram proposed by the authors seen in Figure 2.15. In article [14] only the first four stages

were discussed. The first step, problem investigation is due to the nature of the task done manually. In their

solution LPFORM the second step being the model formulation in an algebraic language is automated. The

third step involves human input, this being necessary to input, store, and retrieve data from a relational

database. The fourth step, solving the model is done automatically.

2.3.2 Creating a GUI Solver for Linear Programming Models in MATLAB

In this paper [7], the authors introduce LpSolver a Graphical User Interface (GUI) for LP problems using

MATLAB. Their solution was created for classroom-sized problems and boasts features such as computing

expressions with symbolic variables and fractions and allowing the users to trace the optimization process.

When building models using the LpSolver users have access to a graphical interface seen in Figures

2.18 where they can input the data manually or load the data from a previously created file, however, users

are discouraged to use LpSolver to solve problems with more than 50 constraints or 100 variables. Users

can also save the created model and have access to different algorithms for solving the problem, this

includes the Simplex Method, the Big-M Method, the Two-Phase Method, and the Dual-Simplex Method.

2.3.3 gLPS: A graphical tool for the definition and manipulation of linear

problems

In this paper [8], the authors introduce, gLPS (graphical Linear Programming System), this tool allows

users to express linear problems using graphical objects (circles for restrictions, squares for variables,

etc.) networked according to specific rules to form a model. The major strength of gLPS is grounded on
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Figure 2.17: LpSolver graphical interface create formulation with output all iterations

Figure 2.18: LpSolver graphical interface with final solution output

it being able to express LP models belonging to a wide array of domains, gLPS is not only a modeling

language but also an integrated software system for the creation, modification, and running of LP models.

Contrary to other projects presented in this Subsection gLPS was created for experts capable of formu-

lating LP models algebraically and the author’s name LPForm( Subsection 2.3.1 ) as being one language

focused on improving LP for nonexperts. The symbolism used by gLPS is a direct translation of the alge-

braic notation, a choice whose authors assert restricts the potential users of gLPS. The authors justify this

choice by claiming that this notation would be a more natural approach to OR specialists. When creating a

restriction using gLPS users are presented with an interface seen in Figure 2.20, using this interface users
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Figure 2.19: LpSolver graphical solution

Figure 2.20: gLPS graphical interface

can drag, drop, and connect different components to create a LP model, in this interface the squares

designate the variables, the circles the represent either an inequation or an objective and the triangles

represent the data.
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Figure 2.21: GUI LP interface for MATLAB

2.3.4 Two-variable Linear Programming: A Graphical Tool with

Mathematica

In this paper [22], the authors introduce GLP-Tool, a MATEMATICA graphical interface designed to help

users understand fundamental concepts of LP. The author’s goal is to leverage active learning to increase

student engagement during the learning process. This tool is a dynamic, interactive, and visual tool that

allows solving user-defined LP problems with two variables. In particular, the user can explore different

objective functions and constraint sets, obtain graphical and numerical information on optimal solutions

and intuitively perform post-optimal and sensitivity analysis. The author’s focus is clearly on education

and teaching the mathematical component behind LP and the author justifies some of their choices on

classroom requirements.

The interface shown in Figure lets the users input the objective and constraints by using selection and

sliding inputs, it allows for the definition of nonnegativity by choosing the option in the variable, choosing

the values of the constants using a sliding option as well as the variables in the objective and constraints,

user can also choose to maximize or minimize the objective. Users can then visualize the feasible area

and solution.

2.3.5 Conclusions

Overall we found that the projects referenced in this Section either have a mathematical approach to LP

and its methods and do not offer business-focused features such as Excel by allowing users to work with

data to create the formulations such as in Excel, this is seen in Subsections 2.21 and 2.3.2. Or despite

having a similar focus to us possess outdated and not very intuitive interfaces, this is seen in Subsections
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2.3.1 and 2.3.3

Taking into account we believe that it is possible to leverage modern advancements in visual languages

and web technologies to create a tool that offers a better approach from an applied perspective than the

ones referred to in this Section.
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3
A block-based language for linear programming

Here, we introduce our proposed language, We will go over how LPBlocks processes the data, which

blocks were designed, and how to define the variables, constraints, and LP objective. Additionally, to make

it easier for the reader to accompany the language constructs and format, we will be using a running

example featured in a Master of Business Administration (MBA) exam [4]. This example problem aims to

increase the profit of deliveries by airplanes. The problem statement provides values for the weight and

space capacity of three different airplane’s compartments (front, rear, and center) and maximum values

for the weight, volume, and profit for four different cargoes (C1, C2, C3, and C4) as seen in Figure 3.1.

Figure 3.1: Input data for the running example problem

3.1 Data parsing

Our language requires the input data to follow a specific structure. This structure allows for the definition

of index columns (as seen highlighted in blue in Figure 3.1), this are used to reference values and iterate

over the data columns (in white the same figure) this being always associated with one index column.

To distinguish between the two we assume that the data columns addressed by a given index column

appear in the spreadsheet immediately after the said index column, and that different sets of index and

data columns are separated by an empty column as can be seen in the figure (fourth column). In this

case there are two sets, the first being for the three plane compartments and the second for the four types

of cargo.
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3.2 Blocks

A
B

C

D

Figure 3.2: Building blocks for LPBlocks

The building blocks of the linear programming language we propose can be seen in Figure 3.2. LP-

Blocks includes:

• Variable blocks (seen in Figure 3.2.A): Blocks for creating single, column and matrix variables.

• Operation block (seen in Figure 3.2.B): A block to construct an individual constraint.

• Building blocks (seen in Figure 3.2.C): These blocks include two nesting blocks for the Variables

and Constraints a nesting block to add an individual Constraint to a Constraints block and

an Objective block to define the objective function.

• Value blocks (seen in Figure 3.2.D): A set of blocks to access the variables created before, that

is, values blocks.

To further facilitate this process for novice and inexperienced users, when building a new linear pro-

gramming model, the variables, constraints and objective blocks already appear and are con-

nected in the workplace when creating a fresh solution. In the next sections we detail each of the blocks.
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3.3 Defining variables

To define a mathematical linear programming model, considering our running example one would start

by creating a set of variables iterating over the the airplane sections and the cargoes as shown in Figure

3.3.C (we refer to the problem’s original website for a more common variable naming). Since this is a very

common scenario, LPBlocks includes a construct that can be used to define all these variables which we

call a matrix. In Figure 3.3.B we use such a construct to create the variables for the running example.

In the example, we use a matrix variable block to create a new 𝑁 × 𝑀 matrix variable named

CompartmentCargo, with 𝑁 being equal to the length of the column Compartment and𝑀 to the length

of the column Cargo with these columns serving as its indexes.

A

B

C

Figure 3.3: Create variables

LPBlocks offers several options to define new variables, using the blocks seen in Figure 3.2.A respec-

tively:

• single variables through its name;

• column variables defining its name and an index column for which the variable will be iterated and

accessed;

• matrix variables that take a name and two index columns for which they can be iterated and those

values accessed (used in Figure 3.3.B).

The process of generating the model variables is dependent on which variable blocks we used:

• For the single variable block, a variable is generated with the chosen name.

• For column variable blocks, an array of variables is created.

• For matrix variables blocks, a matrix of variables is created( as shown in Figure 3.3.B).
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3.4 Defining constraints

The second step to define the mathematical model would be to create a set of constraints, using the

variables created before, and encoding the restrictions of the underlying problem. A constraint of the

running example is that one “cannot pack more of each of the four cargoes than their available quantity”.

The mathematical encoding would be as shown in Figure 3.4. There are four constraints, one for each

cargo. For each constraint, the left hand side of the inequality displays the sum of variables referring to

the corresponding cargo (e.g. C1 for the first constraint) and for the three different airplane sections. On

the right-hand side one would write the cargo weight limit.

Figure 3.4: Defining constraints for the cargoes weight

Figure 3.5: Defining constraints - second example

In LPBlocks, each constraint is defined by dragging a constraint block inside the constraints block

(second and third blocks from the top in Figure 3.2.C) and then using the value blocks (blocks in Figure

3.2.D) and operation blocks (blocks following the constraint block in Figure 3.2.B) to express the con-

straints. In our language, operation blocks represent relations between blocks and are used to express

several operations including arithmetic operations and inequalities. The value blocks can represent:

• Columns;

• Previously defined variables;
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• Numbers.

The variables can be accessed using different blocks and options. This as well as the way the columns

are used influence how the constraints will be generated. As an example a user can access a matrix

variable with a single slot variable block in Figure 3.4 to generate multiple constraints or use the three slot

variable blocks to access a particular value of the given variable.

Our solution possesses other features such as using the positioning and index columns of the variables

and columns used in the constraint construction automatically deducing summations, sumproducts and

sets of linear programming constraints from the high level user defined visual constraints.

The first constraint in Figure 3.4.A is defined in our language by using: i) an operation block with

the inequality sign <=; ii) a variable block with the option CompartmentCargo and; iii) a column

block with the option Weight. Since the constraints block only appears after the variables block

the compiler knows the index values for both the column and variable used and thus can generate the

correct constraints which in this case are expressed in Figure 3.4.B.

Another example constraint can be expressed in natural language as “the volume (space) capacity of

each compartment must be respected”. This constraint (in Figure 3.5.A) uses X (multiplication) and <=

operation blocks and value blocks to express the more complex constraints. This constraint differs

from the previous ones since the use of the X operation block leads to the generation of sumproduct

constraints instead of sum. For this constraint, our compiler generates the linear programming constraints

featured in Figure 3.5.B.

3.5 Defining the objective functions

The final step in a linear programming model is the definition of an objective function. For our running

example, one intends to maximize the profit of the airplane usage.

Figure 3.6: Objective function for the running example

To define the objective function users must connect the objective block and the constraints

block together and use several value and operation blocks.

In the example seen in Figure 3.6.A the objective function is created by using an operation block

with value<=, a column blockwith option Profit, and a variable blockwith the option CompartmentCargo.
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The objective function generated by this statement is the one featured in 3.6 which would be the one written

in a mathematical model.

33



C
h
a
p
te

r

4
Implementation and architecture

4.1 Components and architecture

Our implementation possesses three main components these components are the Web application, used

to provide the user access to our application and with an interface to select the data, build and run the

models. Our application includes a Rest API to read spreadsheet files and a Rest API to run the model and

get a solution. A component diagram with the architecture of our implementation can be seen in Figure4.1.

4.2 Web application

The Web application was built using various web technologies such as React, Redux, node-blockly1 and

others, our goal was to create a highly dynamic and interactive way for users to build their models and to

do so we believed using the previously referred libraries would be conducive to our goal.

Because of performance issues and to guarantee near-instantaneous feedback for the user when

creating the models in the block-based language we tried to do most of the computing in the front-end since

this allows for lower communication costs, this was possible to do for the mathematical formulation for

the model built by the user since the code generation component of our LPBlocks Blockly implementation

was built by us. The running of the model by a solver and the reading of data from the spreadsheets is

done on the backend, this was done do to better existing libraries in Node.js when compared to libraries

that run in the browser for the preceding purposes. The communication between the Web Application and

the services are done using the Rest protocol.
1https://www.npmjs.com/package/node-blockly
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Figure 4.1: Component diagram for our application

4.2.1 Compilation process

In this Subsection, we elaborate on the different aspects of the compilation process used to generate the

LP mathematical formulations from our language. In Subsubsection 4.2.1.1 we explain how the variables

are generated from a block statement and the data coming from a spreadsheet we then in Subsubsection

4.2.1.2 explain how we generate the constraints and the objective.

4.2.1.1 Generating variables

To generate the variables into our internal representation when reading a variable block, our compi-

lation process consists in reading the name of the given variable and depending on the blocks used we

either: i) stop there for a single variable block, (ii)) read the variables index columns. The compiler

then sets the variable name as a key to a list with the index columns used to create the variables as its

value. The individual variables created with various iterations are computed when necessary.

The process of computing the variables when given their name consists in retrieving the index columns

array for the given variable, and calculating all possible permutations for the contents of the columns. This

35



CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

process can be visualize in Figure 3.3, in this Figure the users uses a Matrix Variable block to

define the variable and our compiler then iterates over both the columns passed as the input to generate

the variables.

4.2.1.2 Generating the constraints and objective

Generate base expression from blocks

Expand each expressions

Expand sum expressions

Figure 4.2: Defining constraints - second example from Chapter 3

Algorithm 4.1 Expand sum expression

1: function expand_sum_expression(𝑒𝑥𝑝𝑟 )
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑠𝑢𝑚 ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 ← 𝑒𝑥𝑝𝑟
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← []
7: for 𝑐𝑒𝑙𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 do
8: 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 .𝑎𝑑𝑑 (𝑐𝑒𝑙𝑙)
9: end for

10: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 ← 𝑛𝑒𝑤𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑠𝑢𝑚” + 𝑣𝑎𝑙𝑢𝑒, 𝑠𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 . 𝑗𝑜𝑖𝑛(” + ”)))
11: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟
12: end function

The process of generating the constraints is not as forward as for generating the variables since creating

the constraints in our language involves more blocks and complex operations that support polymorphism

such as operation blocks with the X option. The first step to compute a constraint from our language

to the mathematical formulation is to compute the value blocks, the output of the value blocks is

dependent on the block used and its options and requires that information relative to some of the opera-

tions passes from the value blocks to the operation blocks, this information consists in indications

for generating sums and iterations. To do so when accessing a particular value of a given column or vari-

able we represent the value internally as nameofcolumnorvariable[index_indexcel]. When the user selects

36



CHAPTER 4. IMPLEMENTATION AND ARCHITECTURE

Algorithm 4.2 Expand each expression

1: function expand_each_expression(𝑒𝑥𝑝𝑟 )
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑒𝑎𝑐ℎ ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 ← []
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 .𝑎𝑑𝑑 (𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑒𝑎𝑐ℎ” + 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑒𝑙𝑙))
7: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠
8: end function

Algorithm 4.3 Generate sumproduct

1: function generate_sumproduct(𝑒𝑥𝑝𝑟,)
2: 𝑉𝑎𝑙𝑢𝑒𝑠𝑒𝑎𝑐ℎ ← 𝑓 𝑖𝑛𝑑𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑎𝑐ℎ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
3: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 ← []
4: for 𝑣𝑎𝑙𝑢𝑒 𝑜 𝑓 𝑣𝑎𝑙𝑢𝑒𝑒𝑎𝑐ℎ do
5: 𝑐𝑜𝑙𝑣𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑑𝑎𝑡𝑎 𝑓 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑎𝑙𝑢𝑒
6: 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠 .𝑎𝑑𝑑 (𝑒𝑥𝑝𝑟 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (”𝑒𝑎𝑐ℎ” + 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑒𝑙𝑙))
7: end for

return 𝑛𝑒𝑤𝑒𝑥𝑝𝑟𝑠
8: end function

sum or each we represent the value internally as nameofcolumnorvariable[operation_index_indexcol].The

purpose of expanding the each operation at the moment of parsing the inequation is due to the possibility

that the iteration of one column is applied to more than one variable or column. The purpose of expanding

the sum operation or the objective is due to the fact that this operation can be used in more than one

context that changes its meaning such as using it as part of a operation block with the option X to

create a sumproduct (as seen in Figure 3.4) of two columns or one column and one variable or standalone

to represent the sum of a given column or variable.

After compiling the value block to their respective location, sum, or iterations of a column or variable

we then compile the different operation blocks, the compilation of the operation blocks differs

forthe given operations, for the inequations we first retrieve the different each indication and use them to

generate the multiple constraints as seen in Algorithm 4.2 by first treating them as a set and generating

constraints for all the permutations of the given columns. When generating the operation performed using

the X option, the operation computed is dependent on the input given, if we are given either single values

or a single value on one side and multiple values on the other, the single value is multiplied by each of

the multiple values. When multiplying both values generated with the option sum a sumproduct as seen in

Algorithm 4.3 operation is generated, we opted for this option relatively to doing a multiplication since we

considered that it would be the most intuitive for our target audience. For the + and - operation options

we use the first input as the left side statement and the second as the right side statement. When a sum

isn’t expanded as a sumproduct operation it is replaced by a sum of the different values of the given index

column as seen in Algorith 4.1 The way we compile the objective is similar to the constraints, differentiating
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in not allowing for the use of each in value blocks and inequations in the operation blocks.

4.2.2 Interface overview and organization

A

B

C

D

E

F

G

Figure 4.3: Our web application interface

For the users to be able to access our language we create a web application that allows users to build

LP models using our language seen in Figure4.3.F and Figure4.3.G while accessing the data loaded from

a spreadsheet seen in Figure4.3.E and seen the model dynamically compiled into a valid formulation. The

users can also run the model and get the results as can be visualized in Figure4.3.D.

The interface was built using Typescript, React, Redux and other web technologies. The blocks and

workspace were implemented using the react-blockly library2. We decided to use Typescript for this project

since it offers better reliability when compared to JavaScript especially when it comes to tasks related to

generating the LP specification. We choose React and react-blockly since it was well suited for the highly

dynamic data generated when the users loads data from spreadsheets, create and run the model.

4.2.3 Features

4.2.3.1 Load and visualize data from spreadsheets

One of the core features of our interface is the ability that the users have to use spreadsheets to load the

data used to build new models, this feature can be used to reuse the model created with compatible data.
2https://www.npmjs.com/package/react-blockly
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As seen in Section3.1 the data used to build the model is extracted from a compatible spreadsheet

the data is then shown in Figure4.3.E and can be used in the workplace when building the model as seen

in Figure4.3.G.

A

B

C

Figure 4.4: Loading data in our application
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4.2.3.2 Dynamic model generation

Being able to visualize the generated LP formulation is crucial for users learning how to use our language

and to add a layer of safety between the model creation in our language and the execution of the generated

model. To further improve this process users can visualize the model being created in the workspace(

in Figure4.3.G ) using our language in it’s mathematical formulation ( in Figure4.3.A, Figure4.3.B and

Figure4.3.C ). This feature is also useful for experimentation since users can observe the impact of each

change in the workplace in the resulting model and thus can correct possible mistakes and achieve better

efficiency when building their models.

The dynamic generation features can be seen in Figure4.5 in various steps of building the model.

In Figure4.5.A the user created a column variable and can expand on the variables generated by

hovering over the list of generated variables( in the section seen in Figure4.3.A ). The user then created

the constraints( in Figure4.5.B and Figure4.5.C ) and the constraints generated by our tool can be seen

in real-time. In Figure4.3.D the user added the objective and in Figure4.5.E the user ran the model and

received the results.

B

A

C

D

E

Figure 4.5: Dynamic model generation in our application
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4.2.3.3 Error messages

Another feature of our tool is the addition of dynamic error checking and messages, our goal with this

feature is to help novice and more experienced users debug the constructed models as well as helping

users learn our language and catch mistakes commonly associated with creating LP models and in using

Block-based languages.

LPBlocks offers the following error messages:

• Column with the given name already exists: This error is given when the user attempts to

create a variable with a name already used for an existing column. When outputting this message

the variable generated by our model is colored red and the user can visualize more information

about the error by hovering the mouse above the given variable.

• Missing inequation in constraint: This error is given when a user attempts to create a constraint

without using an operation block with an inequation option.

• More than one inequation in constraint: This error is generated when the user attempts to

create a constraint with two ore more inequations. This error is shown by highlighting the constraints

associated with this attempt in red with a more descriptive message appearing when the user hovers

the constraints.

• Null values in expression: This message is given when an expression contains Null values.

• Variable multiplication: This error is generated when the user attempts to multiply two variables

together. This message consists of a red highlight of the affected expressions with a more descriptive

message consisting of the names of the variables that the user is attempting to multiply.

• Empty fields: This error is output when the user did not select the field in a selectable block.

• Inequation in objective: Given when the user attempts to use an inequation when creating the

objective.

• Each used in objective: When the user attempts to use the option each in an objective.

4.3 Spreadsheet reading service

Listing 4.1: Spreadsheet data in JSON format

1 {

2 [

3 {

4 Vegetables: 'Beans',

5 Iron: 0.5,

6 Phosphorus: 10,
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7 Calcium: 200,

8 Cost_per_pound: 0.2

9 },

10 {

11 Vegetables: 'Corn',

12 Iron: 0.5,

13 Phosphorus: 20,

14 Calcium: 280,

15 Cost_per_pound: 0.18

16 },

17 {

18 Vegetables: 'Broccoli',

19 Iron: 1.2,

20 Phosphorus: 40,

21 Calcium: 800,

22 Cost_per_pound: 0.32

23 },

24 {

25 Vegetables: 'Cabbage',

26 Iron: 0.3,

27 Phosphorus: 30,

28 Calcium: 420,

29 Cost_per_pound: 0.28

30 },

31 {

32 Vegetables: 'Potatoes',

33 Iron: 0.4,

34 Phosphorus: 50,

35 Calcium: 360,

36 Cost_per_pound: 0.16

37 }

38 ]

39 }

Listing 4.2: Input for the Solver API

1 {

2 model: `Maximize

3 obj: + 0.6 x1 + 0.5 x2

4 Subject To

5 cons1: + x1 <= 1

6 cons2: + 3 x1 + x2 <= 2

7 End`

8 }
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This service was created as a Rest API using Express.js3 that accepts the upload of a given spreadsheet

file and then reads it using node-xlsx4 library and sends back the contents of spreasheet in JSON format

as seen in Listing 4.1.

To translate the data in the spreadsheet into our internal representation used to generate the con-

straints( this process can be seen in 4.6 we load the data from the file into memory in the JSON format.

Subsequently, we parse the JSON data into our internal representation, this process comprises the follow-

ing steps:

• Finding the index columns as seen in Algorithm 4.4, we do this by iterating over the list of columns

names and selecting the first column and the first ones after an ”Empty”column as seen in Algo-

rithm 4.4

• Finding the indexes for each column as seen in Algorithm 4.5, to do this we iterate over the column

names and set each column index column as the previous index column.

• Finding the column data as seen in Algorithm 4.6, to do this task we first iterate over the column

names and set the data

Parsing

Read spreadsheet in Json 
format

Figure 4.6: Input data for the running example problem

3https://expressjs.com/
4https://www.npmjs.com/package/node-xlsx
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Algorithm 4.4 Find index columns

1: function find_indexes(𝑐𝑜𝑙𝑠)
2: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠 ← []
3: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
4: for col of colnames do
5: if 𝑖𝑛𝑑𝑒𝑥 == 𝑇𝑟𝑢𝑒 then
6: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠+ = 𝑐𝑜𝑙
7: 𝑖𝑛𝑑𝑒𝑥 ← 𝐹𝑎𝑙𝑠𝑒
8: end if
9: if 𝑐𝑜𝑙 == ”𝐸𝑚𝑝𝑡𝑦” then

10: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
11: end if
12: end for

return 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑠
13: end function

Algorithm 4.5 Find column indexes

1: function find_column_indexes(𝑐𝑜𝑙𝑠)
2: 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑀𝑎𝑝 < 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔 > ()
3: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
4: 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑙𝑢𝑚𝑛 ← ””
5: for 𝑐𝑜𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑠 do
6: if 𝑖𝑛𝑑𝑒𝑥 == 𝑇𝑟𝑢𝑒 then
7: 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠 [𝑐𝑜𝑙] = 𝑖𝑛𝑑𝑒𝑥
8: 𝑖𝑛𝑑𝑒𝑥 ← 𝐹𝑎𝑙𝑠𝑒
9: end if

10: if 𝑐𝑜𝑙 == ”𝐸𝑚𝑝𝑡𝑦” then
11: 𝑖𝑛𝑑𝑒𝑥 ← 𝑇𝑟𝑢𝑒
12: end if
13: end for

return 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠
14: end function

Algorithm 4.6 Find column data

1: function find_column_data(𝑐𝑜𝑙𝑠)
2: 𝑐𝑜𝑙𝑢𝑚𝑛𝑑𝑎𝑡𝑎 ← 𝑀𝑎𝑝 < 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑠𝑡𝑟𝑖𝑛𝑔 > ()
3: for 𝑐𝑜𝑙 𝑜 𝑓 𝑐𝑜𝑙𝑠 do
4: 𝑐𝑜𝑙𝑢𝑚𝑛𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑙𝑠 [𝑐𝑜𝑙]
5: end for

return 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥𝑒𝑠
6: end function

4.4 Optimization service

The optimization service uses Express.js once again to create a Rest API. This API receives a JSON struc-

ture that includes the model in a format that the solver can run. The API then runs the model using the
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clp-wasm5 library and sends the output back. This library is a port of the COIN-OR LP solver toWebAssem-

bly. To use this service we also transform the formulation in our web application internal structure to the

format seen in Listing 4.2.

5https://www.npmjs.com/package/clp-wasm
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5
Language applicability

In this section we present a set of LP problems taken from an MBA exam [4] and from an Operations

Research textbook, [5] and modeled using LPBlocks. With this, we intend to illustrate the applicability of

our language to a broad set of examples since doing so gives us some assurance that our language could

be used as a replacement for another LP tool and users would still be able to solve their problems

5.1 Vegetable mixture

This example shown in Figure 5.1 comes from the operations research textbook [5]. In this example,

a manufacturer of freeze-dried vegetables aims at reducing production costs while adhering to various

nutrition criteria and guidelines. We are given nutritional data for each of the vegetables as well as their

cost per pound in the tabular data. We have a maximum percentage for certain vegetables and the lower

bounds for certain nutrients.

Since our goal is to find the ratio of each vegetable that goes into the mixture, we created a column

variable named Mixture that takes as its input the column Vegetable. For the constraints we start by

creating constraints imposing limits of 40% for Beans and 32% for Potatoes. The following three constraints

define the lower bounds for the given nutrients and the last adds non-negativity. The objective is to minimize

the cost per pound of the mixture. The verbosity of this model could be improved if support for inputing

data in the form of matrices in the spreadsheet was added. This would decrease the necessity of using

single value blocks since iteration through both indexes would be possible.

When compared with implementing this model using mathematical notation, LPBlocks allows for the

creation of a more concise and intuitive model. We feel that our language lends itself to this sort of problem

since it allows for the generation of sizable mathematical constraints using more concise business logic.
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LPBlocks

Constraints

Objective

Generates

Figure 5.1: Definition of the vegetable mixture problem using LPBlocks

5.2 Fruit canning plants

In this example taken from an MBA exam [4] and shown in Figure 5.2 we are given information associated

with different suppliers and fruit canning plants with the goal of maximizing its profits. The information

includes shipping, labor and operating costs, buying prices and maximum production capacities. Despite

not being in the spreadsheet, the problem definition states that the selling price for each tonne is of $50.

To generate the formulation we create a matrix variable with indexes Supplier and Plant. The

constraints for this problem are straightforward and can be generically specified, this consisting of the

upper bounds for the supply and capacity for each of the plants. The objective function is considerably

more complex since it needs to take into account the selling price and all the costs to represent the

profit. The objective verbosity could be mitigated by adding the support for defining matrices inside the

spreadsheet for the data. To improve the reusability of the created models adding support to define data

variables inside the spreadsheet could also be done. To help users better visualize the model we will add

support for intermediate values to store portions of more verbose components. More concretely in this

model we could create blocks for the different operating costs used in the objective and reference these
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Figure 5.2: Fruit canning plant example modeled using LPBlocks

blocks at the moment of its definition.

When comparing with traditional mathematical notation or even other solutions LPBlocks allowed for

considerable savings in terms of syntax for the expression of constraints however we found that due to its

complexity the objective function specification in LPBlocks was similar to the mathematical form.

5.3 Machine allocation

In the problem shown in Figure 5.3 (taken from [4]) the goal is to maximize a factory’s profit by allocating

the production of different goods among two machines. In this problem we are given information about

each product’s profitability, use of floor space and manufacturing time in minutes taken by each machine.

We are also given other rolls related to the machines down time, the total floor space of 50𝑚2, the time of

a work week of 35 hours, the ratios of which some products have to be produced relatively to others and

that Product 1 can only be manufactured in the second machine.

In this example we create column variables for each machine taking the Proudct column as the

index as opposed to previous examples where we created matrix variables. In this we did not create a

matrix variable as could be assumed do to the fact that the values for the machines are not used as
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Figure 5.3: Machine allocation problem in LPBlocks

index columns and using them for defining a matrix variable would mandate the referencing of one

of the values for every use of the variable and would offer nothing in terms of iterability and generalization.

In terms of constraints we use the first constraint to express that the maximum floor space use is of

50𝑚2. If LPBlocks supported matrices as data input we possibly could express this constraint in a less

verbose manner. In the second constraint we express that the production of product 2 is the same as 3.
In constraints three and four we take into account the downtime of 5% for machine 1 and 7% for 2 by

modeling that the total running time of each machine must be lower or equal to 95% and 93% of the

total work week. The objective aims to maximize the profit and takes into account that Product 1 can

only be manufactured in the second machine. This is the reason we were not able to use a more generic

representation for this constraint.

Similarly to the previous example we found some benefits in terms of smaller footprint but since the

creation of the model required the use of complex mathematical operations it couldn’t make use of most

of LPBlocks features.
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5.4 Pharmaceutical company

This problem was taken from a Excel optimization tutorial1. Our goal in this problem is to reduce the

manufacturing costs associates with a given drug. The data that we are given consists in three packagings

of the same drug. The quantity of drug per vial for each type of the drug is also given, we also get the price

per package and total needed in miligrams by the patients. In this model the variables are the quantity of

each of the packages, the constraint is that the total produced of the drugs in miligrams must be hiher or

equal that the total requested by the patients. The objective is to minize the the production costs of the

packagings.

Figure 5.4: Drug manufacturing problem in LPBlocks

To represent the variables we create a column variable with the column Drugs and called this variables

Dose. To represent our constraint we use a operation block with the option <=, this blocks first input

is another operation block with the option 𝑋 in this block we feet a variable block with index

𝑠𝑢𝑚 and a column block with the option 𝑠𝑢𝑚 this block represents a sumproduct operation between

the variables Dose and the column Vial_mg. The first operation block is also connected to the value

Total of the column Need. The objective was created by doing a sumproduct of column Price and the

variables Dose.

5.5 Computer manufacturing

In this problem taken from the a computer manufacter needs to decide the quanities of each of two

computetr models to manufacture. For this we are given two components necesary for the manufacture

a computer model this being Materials and Labor. We also get for each of the components the costs for

the manufacture of one model A and for one model B we also get the available quantity of each of this

components. We also get the computer models and profit associated with each of them.Our constraint in
1https://www.exceltactics.com/using-solver-to-optimize-solutions-to-costing-problems-in-excel/
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this problem is to guarantee the resources used dont surpass their values. The objective is to maximize

profits.

Figure 5.5: Computer manufacturing problem in LPBlocks

To represent this problem we first start with the variables, for this we start by creating a column

variable named Production with the column Models as its index, doing it allows us to create a

variable for each of the two models. To create the constraint we use opertion blocks with the𝑋 option

and the 𝑒𝑎𝑐ℎ option as the index of column Available and the variable Production to multiply the

production by the resources for each of the Components.

5.6 Satellite launcing

This problem was taken from a Operation Research textbook [5]. In this problem, we did not use spread-

sheet data for our formulation. For this we know that a company has two payloads(T1 and T2) and wants

to calculate the number of satellites that carry each payload, we also have access to other information

such as the success rate of satellites carrying payload T1 and T2 and the profit for each successful payload

transportation.

We define two single variables in LPBlocks for our variables. The constraints express various

launch success rates, launch times, and maximum launches for each of the loads. The objective is to

maximize the profit for the loads.

5.7 Cargo allocation

This is the example used for presenting the language in previous chapters. To recapitulate our goal in this

problem is to maximize a shipping plane’s profit by allocating four types of cargoes amongst three plane

sections.
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Figure 5.6: Satelite launching problem in LPBlocks

The variable created is a matrix variable that takes the index columns Compartment and

Cargo as its input.

For the constraints, the first three relate to space, volume, and weight capacity limitations. LPBlocks

shines in these three constraints in the sense that when compared with writing a standard mathematical

specification we need to write considerably less specification as doing it in our language allows us to

write a generic specification of the constraint we want to represent and the compiler can generate the

associated constraints in the mathematical notation. The last constraint related to balancing the plane’s

cargo in the different sections had to be done manually since LPBlocks does not possess a block capable of

representing multiple equalities using a single block. We considered adding this block to our language but

found that this specific use case was not prevalent to a level warranting adding the block. The objective

function aims to maximize profits by calculating the sumproduct of the Profit with the sum of our

variables elements indexed by the given Profit element.

52



CHAPTER 5. LANGUAGE APPLICABILITY

Figure 5.7: Cargo allocation problem in LPBlocks
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6
Empirical evaluation

In this chapter, we showcase an empirical study realized with users of different backgrounds, our goal is

to assess if our tool has potential applications in both industrial and education settings by observing how

users react to its different features and how proficient users from different backgrounds become with our

language, tool and the concepts behind them in a relatively short period. In Section 6.1 we showcase the

design of our study and the reasons behind it. In Section 6.2 we showcase the problems and datasets

used for the study. In Section 6.4 we present the data gathered from forms filled by the users and collected

from by us during the interview process. In Section 6.5 we present our conclusions and critical analysis of

the data gathered.

6.1 Design

As said previously our aim is to observe the experience that different users have when using our tools to

solve a plethora of problems and to collect their reactions and feedback.

To achieve the desired outcome in this study we planned on doing hour-long sessions with each of

the participants. During each of the sessions we plan on doing an initial introduction to LP and how our

language tackles those types of problems, we then introduce our tool and its features. After doing so we

solve a demo exercise in front of the user, followed by a joint exercise where the user solves the problem

with extensive input and two individual exercises where the user solves the problem with our input only

when necessary.

Beyond solving the problems we created an individual follow-up questionnaire about their experience

with our language and tool, prior experience and education, and other basic information such as age

and gender. The questionnaire questions can be seen in Appendix A for questions related to the users

background and Appending B for user feedback.

Since the goal of this study is to get qualitative feedback from users and to see their difficulties and
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access if our solution viability with different types of users, we aim to have participants from different

backgrounds and with different levels of experience with LP we contacted via email and word of mouth

possible participants with diverging academic and professional experiences.

6.2 Instrumentation

During the session, we use several problems taken from the book and class notes referenced in Chapter

5 and whose datasets in a spreadsheet format can be found here 1. We use a web implementation of our

tool that can be found in 2.

We used the same set of problems in all our sessions and those where:

• Vegetable mixture - We used a portion of the problem seen in Section 5.1 containing only con-

straints retaining to the maximum ratio of beans in the mixture and the absolute content of iron in

the mixture. We used this problem as the tutorial problem. We decided to use this problem as the

introductory problem since it showed a balance of complexity and relatability with the number of

our tool features shown during its resolution.

• Fruit canning plants - We used this problem as is in Section 5.2 to use as the joint exercise, this

exercise is arguably more complex than the ones to thought to be solved more independently by the

user but allows the user to experience most of the features needed for solving the future exercises.

• Pharmaceutical company - This problem is the first individual problem that the participants are

asked to solve, this problem seen in Section 5.4 is notably simpler than the previous problem and

its simplicity lets the user focus on some of the core features of our tool and has the added benefit

of decreasing the fear and intimidation for users less familiar with LP.

• Computermanufacturer - This problem seen in Section 5.5 is the last of the individual problems,

this problem is more complex than the first of the individual problems but allows the participants

to put into practice various of our language features such as sumproducts between variables and

columns and the use of the each option and requires a more thorough thinking process for the

interpretation and expression of the constraints in our language.

6.3 Execution

To find participants for our study we contacted people in our circles as well and student groups of relevant

subjects as said in Section 6.1 our goal was to have a diverse group of participants and in our case

that entailed increasing the efforts to acquire participants from non-computing backgrounds. Overall we

were able to find 7 participants. Of this group 4 of the participants had a higher education degree in a
1https://drive.google.com/drive/folders/1SAle03APg4JZefFIleS3-1hYGJ3gURI
2https://lpblocks.herokuapp.com/
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computing field and were either currently Master or Ph.D. students. The other 3 had no computing degree

and worked in the business field, one of them worked in consulting and the other 2 work entailed doing

web marketing, customer service, and logistics for e-commerce companies. All participants had at least

a bachelor’s degree and all participants from the computing background are male and from the business

background were female.

The first step when starting the session was to ask users to download the datasets for the session

When starting the session we start with a briefing on LP and some of its uses and some of the difficulties

associated with its use, after doing so we introduce our solution, explain that the results of the study will

be anonymous, and reassure the participants that our goals are to collect qualitative feedback about our

tool, that our tool has a learning curve and that we are not passing any judgment on the participants.

After our introduction we start with the tutorial, this tutorial is composed of an explanation and intro-

duction to our language, this includes how the data is loaded from spreadsheets and its representation in

the tool, our language blocks ant their uses, we also give an explanation of some aspects of the compilation

process and some of the caveats of our tools, we explain to the participant how to navigate our interface

and finally do a live demonstration of one LP model creation using our tool. During this process especially

during the live demo, we encourage the participants to ask as many questions as they need.

Our next step after the tutorial is to let the user solve one of our problems to do so we ask the participant

to change his screen and then after an explanation of the problem and data we guide the user on how to

solve the problem using our solution. During this step we allow the user to do some exploration and allow

the user if he is capable to solve as much of the problem as he can.

Following the joint exercise, we start the first evaluation exercise, both the evaluation exercises are of

a lower difficulty than the explanation exercise, the first one being easier than the second, after explaining

the problem and data we allow the user to do as much as he can only intervening when the user asks for

help or its necessary to avoid the user going on a wrong path. We then do the second problem similarly.

After solving the problems we ask the user for any feedback and proceed to end the session and direct

him to the form.

6.4 Data collection

In this section we showcase tha data collected from the forms, in Subsection 6.4.1 the portion relating

to the participants background and in Subsection 6.4.3 the results relating to the feedback given by the

users. In Subsection 6.4.2 we describe the individual sections with each user.

6.4.1 Background data

In this subsection, we present the background information about the participants of our study. The ques-

tions in the form relating to the subject are available in Appendix A.
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Participant Age Gender Gender Education time (Education field LP experience Optimization
tools

1 25-35 Male Master 8 Computing Took college classes Programming tools
2 25-35 Male Master 8 Computing Took college classes Excel
3 25-35 Male Master 5 Computing Took college classes Programming tools,

Other visual tools
such as GAMS

4 21-24 Male Bachelor 5 Computing Took college classes Programming tools,
Excel

5 more than 35 Female Master 6 Engineering and Business None None
6 21-24 Female Master 5 Business None None
7 21-24 Female Bachelor 3 Business None Excel

Table 6.1: Participants background gathered from the survey

Figure 6.1: Participants age distribution

Figure 6.2: Participants gender distribution

From the information in 6.1 and the graphs extracted from it, we were able to observe that our par-

ticipants have an age distribution predominantly between 21-24 and 25-35, the distribution is split evenly

between those two groups, beyond those we had one person over the age of 35 (Figure 6.1). In terms of

gender as seen in Figure 6.1 we have a slightly male predominating having 4 males and 1 female. In terms

of academic background, we have 4 persons with an exclusively computing background, 2persons with
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Figure 6.3: Participants highest degree distribution

Figure 6.4: Participants main field of education

Figure 6.5: Participants years of post secondary education
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Figure 6.6: Participants prior experience with LP

a business background, and 1 person with both a business and engineering background (Figure 6.4). In

terms of degree, all our participants had post-secondary degrees, we had slightly more participants with

a Masters than with Bachelors (Figure 6.3) and none with Ph.D., of those some of them had concluded

more years beyond their highest completed degree (Figure 6.5). When it comes to prior experience with

LP we had 4 persons who took college classes and 3 persons with none (Figure 6.6).

6.4.2 Sessions

In this subsection we describe the one on one session with the different participants.

6.4.2.1 Participant 1

During the tutorial the participant was able to understand the language and our goals, special emphases

had to be made when explaining the data and variables. The participant was proactive and was able to

solve a considerable portion of the joint exercise. The participant also demonstrated interest in our tool

and language.

Relatively to the first individual problem, the participant tried to maximize the objective instead of

minimizing, this error could have been made since the user might not have understood that our goal with

this problem was not to increase the profit but to decrease production costs since the participant might

have been more accustomed to maximization problems. Other than that the user did not need considerable

amounts of help.

When solving the second problem the user had some difficulties distinguishing between the option

sum and each in the constraints and objective. This user did demonstrate more difficulty in solving this

problem than the previous one especially on how to express the costs in our language but with some help

the user was able to get to the correct solution.
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Overall the user had a positive reaction to our tool and was able to do a good portion of the exercises

and we felt that the user did understand the core of our language and tools and that with some more

experience would be able to achieve mastery of our tool.

6.4.2.2 Participant 2

During the language presentation the subject found himself interested in the language and its features,

this was demonstrated by the subject asking several questions.

When doing the first demonstration problem the user did have some difficulties on where to place the

blocks. After the initial error, he was able to understand the logic behind the variable creation. Other prob-

lems subsequent during the demonstration were related to differences between each and sum, confusion

between sum values from one column or variable, and using the operation block with the value +.

This was solved. Despite some initial confusion, the participant was able to understand the language.

During the first exercise, the major difficulty was representing the production in milligrams as the

sumproduct of the vial quantity and the produced vials. The user was able to get the answer and understand

the reasoning with some help.

The main difficulty in this problem was using two constraints one for the labor and the other for the

materials instead of using an each for both. The user ended up understanding the logic behind the model

and did the rest of the model by himself.

Overall we found that the users understood the core concepts of our language and with some training

could become proficient in the latter.

6.4.2.3 Participant 3

The participant was attentive and asked several questions when watching the tutorial.

When doing the first exercise the user was proactive and was able to solve a significant portion of the

latter. Some difficulties involved the use of each and the use of columns and variables.

When doing the second exercise the user was able to solve the problem on his own, the biggest problem

was in using the correct block for addressing variables and discerning between column and variables

blocks.

When doing the third exercise the user experienced some confusion between the use of each and sum

but was able to solve the exercise.

After our session, manifested interest in our tool and gave some of his opinions related to our tool such

as adding more solver options and exporting data to excel files.

6.4.2.4 Participant 4

The participant was interested in the language and tool and asked several questions. During the example

exercise, the participant asked questions about block positioning and language features, particularly about

the sumproduct operation.
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During the joint exercises, the user was proactive, the user found some initial difficulties when trying

to represent the constraints and objectives in our language but ended up being able to do so with some

help. The main problems were related to understanding how the data correlated with the desired goal of

the constraints and objective, this might be related to the user not using LP regularly.

In the first exercise, there were some difficulties in creating the variables particularly, in creating 3

variables since the user tried to use 3 column variable blocks to create 3 variables, the user was after

visualizing the model generated by our tool able to get the correct way to build the model. Understanding

how to represent the constraint with the data took some tries but the user ended up with some guidance

and visualizing the output getting to the correct answer. For the constraint, the user was able to get there

by visualizing the result, error messages and some trial and error.

In the second exercise the participant the main difficulty was in representing the variables, the rest of

the model took some trial and error but with minor guidance and output visualization, the user was able

to get to the solution. The user did do a manual sumproduct instead of using the sumproduct operation

but that was a result of the trial and error process. With more practice, the user might gain some dexterity

with the tool.

6.4.2.5 Participant 5

During the tutorial the participant was able to understand the purpose of our language and tool, special

emphases had to be made when explaining the data and variables. Despite not being from a computing

background this participant had also an engineering background and understood some of the concepts

that our solution tackles, however, the user did demonstrate some skepticism to our language and its

complexity for non-technical users.

When doing the tutorial the user did not ask as many questions as the previous ones but did ask some,

we tried to explain the concepts and how our tool could be used and the user seem to understand what

we were doing. The user did complement the interface and the features but did feel intimidated by our tool

and doubted her ability to solve problems such as the tutorial problem without our help, in response that

we reassured that after doing an exercise with us and gaining some experience the tool becomes easier

and more intuitive.

During the solving of the joint exercise we allow the user to try to understand the problem and ask any

questions and give her input, some of the difficulties the user had was in understanding the differences

between the blocks for variable access and variable creation, we answered to that and were able to convey

their functions. Some of the operations such as sumproducts weren’t obvious. The user at the end of

this exercise expressed some doubts about the virtue of our tool for users without any prior programming

experience and admitted that despite her prior programming experience in one or two classes in college

she still had difficulties understanding and working with our language.

During the first individual problem the user was able to create the variables, understanding themapping

of our language to the mathematical formulation was something and how to write the expression was

61



CHAPTER 6. EMPIRICAL EVALUATION

something that did not occur immediately but after the initial awkwardness and some further explanation,

the user was able to get over those hurdles and once again understanding the differences between variables

and columns and how the constraint in the natural language would be expressed in terms of data were only

possible with some help and further explanations but the user was able to get there on her own afterward.

We weren’t able to do the last problem due to time constraints we had planned on doing a one-hour

session but by the time we finished solving the first individual problem the time was almost over and the

user could not continue.

6.4.2.6 Participant 6

The user was interested during the presentation and during the demonstration exercise with special em-

phasis to explaining clearly the uses and workings of LP and optimization, however, the participant did

manifest some level of fear related to using our tool. Some of this previous hesitation had to do with the

user not having a strong mathematical background. Despite the hesitation, the user did manifest some

excitement with our tool and despite not doing any optimization in her line of work, she currently does

use excel for tasks related to marketing and business in general, this includes keeping track of stocks and

inventory and interacting with logistic software.

We did most of the joint exercise with this participant, but we saw that during the explanation the user

was interested in the different features of our language and was able to understand some of the solutions

we created and the logic behind it and did show some appreciation for interface and with special relevance

for the dynamic features, data visualization, and blocks.

During the first individual problem the user showed some initial difficulty understanding what variable

to create but after explaining the purpose of the problem again and some trial and error with different

blocks the user was able to get to the correct solution. For creating the constraint understanding where to

use the inequation was an initial problem but was quickly corrected with some explanation. Creating the

sumproduct was the harder part and both the blocks and which column and variable blocks and options

to use require some extensive explanation but in the end, the user got to the solution and was able to

understand the logic behind the use. For creating the objective the user still needed help but was able to

get to the solution faster than for the constraint.

When doing the last problem the user faced some difficulties when understanding the problem and

creating the variable, this time the blocks weren’t an issue. For the constraints, there were still issues

of blocks such as trying to use the wrong variable block to access a variable and a considerable

amount of help was needed for the user to solve the problem but eventually, she did and there was some

improvement compared with the first problem especially in understanding the blocks and how they were

used. After solving this exercise user express her liking for the interface and the blocks and affirmed her

liking for the block-based language and made some comments about possible improvements such as

improving the distinction between the constraint and variables value blocks.
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6.4.2.7 Participant 7

When introducing the language the participant demonstrated interest in our solution, since she had work

experience with excel and found it to have some potential, however since the user did have little to no

prior experience with LP the user felt intimidated by it at first. We made a special emphasis on explaining

what LP entails and in explaining its components and how they relate to our language. The user during

the presentation and tool showcase also expressed her liking for the interface and the language aesthetics

and how the data was displayed.

We did most of the joint exercise with this participant, but we saw that during the explanation the user

was receptive to the different features of our language and was able to understand the solution we created

and the logic behind it.

During the first exercise, there was some difficulty in choosing which variable to use, but after reex-

plaining, the problem and how variables are created the user was able to get to the correct block, and

using our visualization features the user was assured she made the correct choice. There were also some

difficulties in representing the value in milligrams from the variable created and the value in milligrams for

each vial but the user was able to eventually get there with some help. The user was able to get the value

in the spreadsheet to represent the total necessary medication in milligrams. The user was able to get the

objective after some trial and help.

During the second problem, the user was able to get the variable and part of the constraints, once

again the user needed help in doing the sumproduct and there was still some confusion in using the

variable and column block and some help was warranted to achieve the correct solution. Also, some

help was necessary to get to the objective but the user was able to solve portions of the problem. Despite

the lack of previous experience with LP the user still appreciated the tool and was able to understand

some concepts especially using our visualization and dynamic features and gave some advice consisting

especially in improving the differentiation between variable and column blocks. When creating the

constraints there was still some confusion on how columns and variables were used, help she was able

to get to the correct answer.

6.4.3 Participants feedback

During the survey we alsos strive to get feedback about our tool from the users as well as some ideas

and possible improvements that the users might believe would benefiet our tool, to do so we added the

questions in Appending B to our survey, the results from this questions can be seen in Table 6.2.

6.5 Analysis and conclusions

In this section, we present some conclusions and critical analysis related to the data gathered from our

survey and the sessions and their implication on our work and possible future paths, changes, and appli-

cations.
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Participant Other tools Positive aspects Negative aspects
1 Better usability. Usability; Performance;
2 This tool has a strong vi-

sual component. Although
Excel is algorithmically
”more complete”

UX is nice. Drag and
drop works well. Also nice
shortcuts: delete, ctrl+c
ctrl+v. Constraints and Ob-
jective ”sub-windows”are
useful to understand if
the inequations match the
user’s reasoning.

Took me a while to
understand the differ-
ence between ”light-
blue”variable block and
”light-blue”column block.
Each and sum are also a
little confusing at first (but
the previously mentioned
sub-windows help fixing
mistakes).

3 Easy to learn interface,
good visual aid (in the
formula section - we can
compare what the blocks
translate to in terms of
mathematical equations)

Easy to learn interface,
good visual aid (in the
formula section - we can
compare what the blocks
translate to in terms of
mathematical equations).
No installation needed is a
plus.

No option export to file. For
bigger problems / harder
to solve problems, the lack
of alternative solvers could
result in not being able to
solve the problem.

4 Is not drag and drop like
this app.

Simpler Is not intuitive to beginners

5 Easy to use, to grasp and
get together.

Terms of the bottons. De-
pending on the client if
he doesn’t have the right
knowledge it will be diffi-
cult to think in a problem
solving logic.

6 Visualy atractive; Well or-
ganized; All the informa-
tion is well explained when
building the model.

The operations ordering is
confusing.

7 Very intuitive, easy to use,
visualy appelative and well
organized. We can visual-
ize the model being cre-
ated

The order of the opera-
tions is not very intuitive.

Table 6.2: Participants feedback gathered from the survey

According to the data gathered from our sessions and survey, we can separate our participants into two

different groups, one being the users 1 to 4 or the users with a computing background and 5 to 7 or the

users with a business background. By coincidence, the computing group was all male and the business

group all female, the computing group had on average more years of higher education and probably due

to their field of study had prior experience with LP. Age-wise the differences weren’t starling.

From our sessions, we were able to gather that all the participants were interested in our tool and

64



CHAPTER 6. EMPIRICAL EVALUATION

interface and across the board (although possibly due to selection bias) asked various questions this

differing according to the user background being slightly more technical in nature from the computing

group, we also found that users universally liked the interface and the how the data was accessible, this

included the business group where the participants particularly enjoyed having all the data, workspace and

mathematical formulation in the same place. however, during the tutorial and introduction to our solution,

we found that the business group showed either skepticism for participant 5 or hesitation for participants

6 and 7. This was expected due to them not having as much experience in the field.

In terms of actual dexterity and level of proficiency acquired when using our tool during this session we

can conclude that the computing group did considerably better than the business group, this was evident

by the considerably higher portion of the problems they were and lesser input needed. However we still

found some difficulties that prevailed across the users of this group, we found that the relation between the

data and the specification in natural language wasn’t a considerable problem for this group except some

less obvious cases, we found that distinguishing between sum and each initially might cause difficulties

in some cases but are quickly resolved after creating a couple of expressions using this options, we also

found in some cases that the users of this group did not use the language as intended but that quickly

resolved itself. Distinguishing between columns and variables was initially a problem but was eventually

solved. For this group, we also found that the dynamic compilation to the mathematical formulation was

of considerable help in learning our language.

When doing the exercises with the business group we found that the mastery with our tool acquired by

the users varied considerably. We found that user 7 did better than user 6 and that user 5 despite having

only done the first individual exercise. However, with this group, we found some common problems such as

misusing blocks, confusing variables, and columns, difficulties doing the operations such as sumproducts,

difficulties with block order, and how to construct mathematical operations using the blocks. We also

found that these users also had difficulties in interpreting the exercises and in understanding how the data

correlated with the goals of the problems, however, we found that as the session progressed their ability

to do so improved.

From the feedback gathered from the participants, seen in Table 6.2 we found that for the computing

group the negative aspects focus on our tool having some learning curve for beginners, the difficulty in

distinguishing between variable and column blocks, other negative aspects for this group related to

the lack of features such as no options to export or import models and the lack of different solvers. The

positive aspects for this group were related to our interface features and usability such as the ability to

drag and drop, the ability to visualize the mathematical formulation being built in real-time, the ability to

visualize the data, and our tool performance and not requiring installation. When compared to other tools

this group found that it had better usability, the interface was easy to learn and was especially helpful due

to the dynamic compilation and errors allowing users to learn the language as they go along, the drag and

drop capabilities were also something that our application did better than the ones previously used by the

participants, the participants in this group had previously used programming tools, Excel and one of them

had used graphical software.
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The business group in the feedback questions expressed that the negative aspects were that the

language could be difficult for people who don’t have experience in technical fields and that the order in

which blocks have to be inserted in the workplace to create an expression differs from the mathematics.

This group found also positive aspects in our language such as ease of use and starting building models,

the language being visually appealing, being able to see the model being built in real-time and our tool is

intuitive and well organized. These participants had no prior experience with other optimization tools.

Overall we found that some features of our tool such as a graphical interface that displays everything

needed by the user on a single page, the dynamic compilation, and errors were universally liked, we also

found that despite the users in the computing group having done better than the users in the business

group both ended our session with some knowledge on how to use our tool. Some of the challenges felt by

the participants were for the majority distinguishing between certain blocks such as columns and variables

and for users without a computing background, the block order to create expressions was counterintuitive.

We feel that for the users with less experience in the field our tool can serve as an introductory experience

to LP and operations research and as well and with some added features such as loading and exporting

data and more solver options our tool could be used in industry with more experience users or after more

training for less experienced ones.
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7
Conclusions and future work

Here we present our final conclusions and answer to research questions asked in Chapter 1 this is done

in Section 7.1 and in Section 7.2 we present our expected future work.

7.1 Conclusions

Current tools for creating LP models often require previous programming knowledge or use ad-hoc method-

ologies and lack some features that would benefit the less technical user, in our work we were able to design

a block-based language that can express those problems and create a tool that coupled this language with

various features to create an environment that lent itself to users of different technical backgrounds.

We were able to successfully use LPBlocks to express numerous and varied LP problems in Chapter 5.

Further, we took our implementation of LPBlocks, contacted possible participants of different backgrounds,

designed and ran a study to collect data referent to their experience with our tool and language.

During this study, we were able to gather that some features were universally liked such as the dynamic

compilation and errors, drag and drop, the ability to see everything in one window, and the use of a block-

based language. We also found that some aspects of LPBlocks causemore problems such as differentiating

between column blocks and variable blocks, some of the logic behind the language and thinking

in terms of data to solve problems wasn’t obvious for less technical users and some users would have

liked to see more features such as data loading and exporting and more solver options.

We now answer the research questions posed in Section 1.3:

• RQ1 - Can we use block-based languages to represent LP formulations. - Yes as seen in Chapter 5

LPBlocks can be used to represent numerous LP formulations.

• RQ2 -Will using a block-based language provide users an easier environment for LP. - This question

is not as straightforward from our study we were able to conclude that the users that had previously
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used Excel and other optimization software compared ours favorably when it came to the graphical

interface, however not all users in our study had experience with those tools and none of the users

without a computing background did. Despite the lack of comparison for those users, they did enjoy

and benefit from the graphical and block-based features of our tool, features that don’t exist on most

of the other tools.

7.2 Future work

Our future work aims are to use the data gathered in Chapter 6 to continue improving our tool and language

from a user experience perspective and further test our tool using a higher number of participants. Taking

the previously said into account we defined the following tasks as possible future work:

1. Improving the differentiation of variable blocks and column blocks in LPBlocks, this could

be done by changing the color scheme used for those blocks and making it more similar to

the variable creation blocks for the variable blocks and to the index columns for the

column blocks.

2. Adding more features to our tool such as loading and exporting data and mode solver options.

3. Prompting the user with automatic suggestions and templates when building models.

4. Doing further research with a higher number of participants and more time dedicated to teaching

the language and some of the processes necessary to create LP models, especially for users with

less experience in the field.
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A
LPBlocks study form participant background

questions

1. (Age) How old are you - In this question we give the participant the option to select one of the

following options:

a) Less than 18

b) 18-20

c) 21-24

d) 25-35

e) More than 35

f) Rather not answer

2. (Gender) What is your gender identity - In this question we give the participant the option to

choose one of the following options:

a) Male

b) Female

c) Other

d) Rather not answer

3. (Education degree) Highest degree - We allow the participant to choose form one of the fol-

lowing options:

a) Bellow High School

b) High School
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c) Bachelor

d) Post-graduation

e) Master

f) PhD

4. (Education time) Years of post-secondary education - We allow the participant to choose

one of the following options:

a) 0

b) 1

c) ...

d) 9

e) 10+

5. (Education field) Main fields of study - We allow the user to choose multiple of the following

options:

a) Computing ( Computer Science, Informatics Engineering, Information systems, Information

Technology, etc…)

b) Life Science( Biology, Chemistry, etc...)

c) Engineering( Electrical Engineering, Mechanical Engineering, Civil Engineering, etc...)

d) Business( Economics, Business, Marketing, etc...)

e) Humanities( History, Languages, etc...)

f) Mathematics( Mathematics, Statistics)

g) Other: ( fill in option )

6. (Linear programming experience) What’s your academic experience with linear pro-

gramming and operations research - We allow the particpants to choose from multiple of the

following options:

a) None

b) Took college classes

c) Degree in related field( ex Industrial engineering or statistics)

d) Professional experience

e) Other: ( fill in otpion )

7. (Optimization tools) Experience with optimization tools programming and otherwise

- We allow the participants to choose from mutiple of the following options:
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APPENDIX A. LPBLOCKS STUDY FORM PARTICIPANT BACKGROUND QUESTIONS

a) Programming tools

b) Excel

c) Other visual tools such as GAMS

d) Other: ( fill in option )
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LPBlocks study form user feedback

1. (Other tools) If you used any of the tools above how do those compare to ours - This is

a write in question.

2. (Positive aspects) What were in your opinion the positive aspects of our tool - This is a

write in question.

3. (Negative aspects) What where in your opinion the negative aspects of our tool - This

is a write in question.

75



A
n
n
e
x

I
Towards a Block-based Language for Linear

Programming

76



Towards a Block-based Language for Linear
Programming?

Hugo da Gião1,2[0000−0003−3798−0367], Rui Pereira2[0000−0002−5801−7345], and
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Abstract. Linear programming is a mathematical optimization tech-
nique used in numerous fields including mathematics, economics, and
computer science, with numerous industrial contexts, including solving
optimization problems such as planning routes, allocating resources, and
creating schedules. As a result of its wide breadth of applications, a con-
siderable amount of its user base is lacking in terms of programming
knowledge and experience and thus often resorts to using graphical soft-
ware such as Microsoft Excel. However, despite its popularity amongst
less technical users, the methodologies used by these tools are often ad-
hoc and prone to errors.
Block-based languages have been successfully used to aid novice pro-
grammers and even children in programming. Thus, we propose creat-
ing a block-based programming language termed LPBlocks that allows
users to create linear programming models using data contained inside
spreadsheets. This language will guide the users to write syntactically
and semantically correct programs and thus aid them in a way that cur-
rent languages do not. As an initial evaluation we have used LPBlocks
to model 7 linear programming problems with success.

Keywords: linear programming, spreadsheets, block-based languages,
end-user programming

1 Introduction

The versatility of linear programming in specifying all sorts of problems lends
itself useful in many industrial contexts from schedule optimization to route
planning. Since many of its users have little to no programming or technical
knowledge, visual software such as Microsoft Excel is often the preferred tool
when it comes to specifying and solving this type of problem [7].

However, the typical methodologies used when solving those types of prob-
lems using spreadsheet software often come with underlying problems such as

? This work is supported by the national funds through the Portuguese Fund-
ing Agency (FCT - Fundação para a Ciência e a Tecnologia, within project
UIDB/50014/2020).



relying on an imprecise process to feed data from the spreadsheet to the solver,
as well as the difficulties visualizing the models. Many tools commonly used by
professionals working with linear programming such as MATLAB3 and GAMS4

either require considerable programming knowledge or use ad-hoc and error-
prone methodologies. Some projects related to the use of GUI’s for linear pro-
gramming in MATLAB are despite the use of graphical interface detached from
the business logic and more applied use cases [4].

Some projects have used visual languages to tackle aspects of linear program-
ming, however, the majority of them focus on the educational and teaching of
mathematical aspects of linear programming [16,9]. The few existing projects
focusing on the applied side of linear programming tend to be several decades
old and have dated and unappealing interfaces and do not make use of recent
advances in the field of visual languages and human-centered computing [10,17].

Numerous projects have applied visual languages to various areas of comput-
ing generally focused on increasing accessibility of novice and non-technical users
as well as teaching. A considerable amount of these languages use the Blockly
framework for their implementation [14]. These languages include BlockPy [1], a
web-based platform that lets the user write and run Python code using a block-
based language, and Scratch [11], a block-based visual programming language
and educational tool mostly targeted at children.

Taking into consideration the potential of Blockly to improve the usability
and practice of linear programming and the extensive study of block-based lan-
guages and their practices [14,5], we aim to build upon the work already done
in this field to the create a visual programming language and tool capable of ex-
pressing linear programming models in a high level, safe and intuitive manner.

In this work we extend our previous idea of bringing block-based languages
and linear programming [6] by presenting in detail LPBlocks, a block-based
language written using Blockly that is tailored for the construction of linear
programming models. To illustrate the language’s applicability we present its
use to model several linear programming problems demonstrating its use and
fallbacks.

2 Related work

Blockly is a framework that has been used over the last decade in many projects
aiming to improve programming accessibility, in diverse areas going from teach-
ing core concepts [11] to data science [1], robotics [8] and app development [15].

One such project, BlockPy, lets users access several data science libraries
and features, and generates the associated Python code. Additionally, it runs
inside a browser using a Javascript Python interpreter [1]. This project was
shown to be particularly useful in helping introductory level computer science
students transition into having full-fledged ideas, as well as offering the students
a compelling context for learning programming.

3 https://www.mathworks.com/products/matlab.html
4 https://www.gams.com/



Another such project is the MitApp inventor, a platform that allows users
to create full-fledged mobile applications with various graphical interfaces [15].
When using this platform one is able to work on the design of the applications
using a graphical user interface, and on the program’s logic using a block-based
programming language.

Some works tackling various issues associated with the teaching and prac-
tice of linear programming using visual programming also exist. One such work
presents a tool named GLP-tool which allows users to define two variable linear
programming problems using an algebraic language and visualize the solving
process graphically [16]. Another relevant work introduces the LPFORM soft-
ware, which allows managers and operations researchers to formulate large linear
programming programs [10]. LPFORM empowers users during the more repet-
itive steps of building these models by allowing linear programming problems
to be represented using objects and relationships, and uses knowledge-based
techniques to generate the input given to the solver.

There are many solutions in the market catering to users with different needs
and levels of experience although we found that Excel was popular amongst less
technical users [7]. The majority of other tooling such as Matlab, GAMS and
SAS/OR5 cater primarily to users with some programming or mathematical
knowledge. Some of the problems associated with these more advanced tools
relate primarily to the technical complexity of modeling linear programming
knowledge, as well as the need to use textual programming languages. When us-
ing Excel for modeling users face problems associated with the use of spreadsheet
software.

3 A block-based language for linear programming

In this section, we introduce our proposed language, LPBlocks, using an example
featured in a Master of Business Administration (MBA) exam [2]. This exam-
ple problem aims to increase the profit of deliveries by airplanes. The problem
statement provides values for the weight and space capacity of three different
airplain’s compartments (front, rear and center) and maximum values for the
weight, volume and profit for four different cargoes (C1, C2, C3 and C4) as seen
in Figure 1.

Fig. 1. Input data for the running example problem

5 https://www.sas.com/en_us/software/or.html



3.1 Input data specification

Our solution requires the input data to follow a specific structure. This structure
allows for the definition of index columns (as seen highlighted in blue in Figure
1), this are used to reference values and iterate over the data columns (in
white the same figure) this being always associated with one index column. To
distinguish between the two we assume that the data columns addressed by a
given index column appear in the spreadsheet immediately after the said index
column, and that different sets of index and data columns are separated by
an empty column as can be seen in the figure (fourth column). In this case there
are two sets, the first being for the three plane compartments and the second
for the four types of cargo.

3.2 LPBlocks constructs

The building blocks of the linear programming language we propose can be seen
in Figure 2. LPBlocks includes:

Fig. 2. Building blocks for LPBlocks

– Variable blocks (seen in Figure 2.A): Blocks for creating single, column
and matrix variables.



– Operation block (seen in Figure 2.B): A block to construct an individual
constraint.

– Building blocks (seen in Figure 2.C): These blocks include two nesting
blocks for the Variables and Constraints a nesting block to add an in-
dividual Constraint to a Constraints block and an Objective block to
define the objective function.

– Value blocks (seen in Figure 2.D): A set of blocks to access the variables
created before, that is, values blocks.

To further facilitate this process for novice and inexperienced users, when
building a new linear programming model, the variables, constraints and objec-
tive blocks already appear and are connected in the workplace when creating a
fresh solution. In the next sections we detail each of the blocks.

3.3 Defining variables

To define a mathematical linear programming model for our running example one
would start by creating a set of variables iterating over the the airplane sections
and the cargoes as shown in Figure 3.C (we refer to the problem’s original website
for a more common variable naming). Since this is a very common scenario
LPBlocks includes a construct that can be used to define all these variables
which we call a matrix. In Figure 3.B we use such a construct to create the
variables for the running example. In the example we use a the matrix variable
block to create a new N ×M matrix variable named CompartmentCargo, with
N being equal to the length of the column Compartment and M to the length
of the column Cargo with these columns serving as its indexes.

A

B

C

Fig. 3. Create variables

LPBlocks offers several options to define new variables, using the blocks seen
in Figure 2.A:

– single variables through its name;



– column variables defining its name and an index column for which the vari-
able will be iterated and accessed;

– matrix variables that take a name and two index columns for which they
can be iterated and those values accessed (used in Figure 3.B).

The process of generating the model variables is dependent on the variables
block used:

– For the single variable block a variable is generated with the chosen name.

– For column variable blocks an array of variables is created.

– For matrix variables blocks a matrix of variables is created(as shown in
Figure 3.B).

3.4 Defining constraints

The second step is to define the mathematical model would be to create a set
of constraints, using the variables created before, and encoding the restrictions
of the underlying problem. A constraint of the running example is that one
“cannot pack more of each of the four cargoes than their available quantity”.
The mathematical encoding would be as shown in Figure 4.B. There are four
constraints, one for each cargo. In each constraint, on the left-hand side of the
inequality one should sum the variables referring to the corresponding cargo (e.g.
C1 for the first constraint) and for the three different airplane sections. On the
right-hand side one would write the cargo weight limit.

A B

Fig. 4. Defining constraints for the cargoes weight

In LPBlocks, each constraint is defined by dragging a constraint block inside
the constraints block (second and third blocks from the top in Figure 2.C) and
then using the value blocks (blocks in Figure 2.D) and operation blocks (blocks
following the constraint block in Figure 2.B) to express the constraints. In our
language, operation blocks represent relations between blocks and are used to
express several operations including arithmetic operations and inequalities. The
value blocks can represent:

– Columns;

– Previously defined variables;

– Numbers.
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B

Fig. 5. Defining constraints - second example

The variables can be accessed using different blocks and options. This as well
as the way the columns are used influence how the constraints will be generated.
As an example a user can access a matrix variable with a single slot variable
block in Figure 4.A to generate multiple constraints or use the three slot variable
blocks to access a particular value of the given variable.

Our solution possesses other features such as using the positioning and index
columns of the variables and columns used in the constraint construction auto-
matically deducing summations, sumproducts and sets of linear programming
constraints from the high level user defined visual constraints.

The first constraint in Figure 4.A is defined in our language by using: i) an
operation block with the inequality sign <=; ii) a variable block with the
option CompartmentCargo and; iii) a column block with the option Weight. Since
the constraints block only appears after the variables block the compiler
knows the index values for both the column and variable used and thus can
generate the correct constraints which in this case are expressed in Figure 4.B.

Another example constraint can be expressed in natural language as “the
volume (space) capacity of each compartment must be respected”. This con-
straint (in Figure 5.A) uses X (multiplication) and <= operation blocks and
value blocks to express the more complex constraints. This constraint differs
from the previous ones since the use of the X operation block leads to the
generation of sumproduct constraints instead of sum. For this constraint, our
compiler generates the linear programming constraints featured in Figure 5.B.

3.5 Defining the objective function

The final step in a linear programming model is the definition of an objective
function. For our running example, one intends to maximize the profit of the
airplane usage.

To define the objective function users must fit the objective block into the
constraints block and use several value and operation blocks to define the
function.
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B

Fig. 6. Objective function for the running example

In the example seen in Figure 6.A the objective function is created by using
an operation block with value <=, a column block with option Profit, and
a variable block with the option CompartmentCargo. The objective function
generated by this statement is the one featured in 6.B which would be the one
written in a mathematical model.

3.6 Implementation

This language is included in a previously existing software prototype developed in
the context of a work exploring the creation of systematic spreadsheet processes
using a process-like notation [12,13]. This tool currently supports some of the
operations associated with creating and editing spreadsheets such as adding
columns, sorting, filtering or and creating charts. Our goal is to extend the
current software with functionalities that would allow users to build correct and
robust linear programming models.

We use the Blockly framework to define our language syntax. This is then
compiled into an OR-Tools valid linear programming model.

4 Language applicability

In this section we present a set of linear programming problems taken from an
MBA exam [2] and from a Operations Research textbook [3] and modeled using
LPBlocks. With this we intend to illustrate the applicability of our language to
a broad set of examples. In Appendix A we include the solution in LPBlocks of
other problems.

4.1 Vegetable mixture

This example shown in Figure 7 comes from the operations research textbook
[3]. In this example a manufacturer of freeze-dried vegetables aims at reducing
production costs while adhering to various nutrition criteria and guidelines. We
are given nutritional data for each of the vegetables as well as their cost per



LPBlocks

Constraints

Objective

Generates

Fig. 7. Definition of the vegetable mixture problem using LPBlocks

pound in the tabular data. We have a maximum percentage for certain vegetables
and the lower bounds for certain nutrients.

Since our goal is to find the ratio of each vegetable that goes into the mixture,
we created a column variable named Mixture that takes as its input the col-
umn Vegetable. For the constraints we start by creating constraints imposing
limits of 40% for Beans and 32% for Potatoes. The following three constraints
define the lower bounds for the given nutrients and the last adds non-negativity.
The objective is to minimize the cost per pound of the mixture. The verbosity of
this model could be improved if support for inputing data in the form of matrices
in the spreadsheet was added. This would decrease the necessity of using single
value blocks since iteration through both indexes would be possible.

When compared with implementing this model using mathematical notation
LPBlocks allows for the creation of a more concise and intuitive model. We
feel that our language lends itself to this sort of problem since it allows for the
generation of sizable mathematical constraints using more concise business logic.



4.2 Fruit canning plants

In this example taken from an MBA exam [2] and shown in Figure 8 we are
given information associated with different suppliers and fruit canning plants
with the goal of maximizing its profits. The information includes shipping, labor
and operating costs, buying prices and maximum production capacities. Despite
not being in the spreadsheet, the problem definition states that the selling price
for each tonne is of $50.

Fig. 8. Fruit canning plant example modeled using LPBlocks

To generate the formulation we create a matrix variable with indexes
Supplier and Plant. The constraints for this problem are straightforward and
can be generically specified, this consisting of the upper bounds for the supply
and capacity for each of the plants. The objective function is considerably more
complex since it needs to take into account the selling price and all the costs to
represent the profit. The objective verbosity could be mitigated by adding the
support for defining matrices inside the spreadsheet for the data. To improve the
reusability of the created models adding support to define data variables inside
the spreadsheet could also be done. To help users better visualize the model we



will add support for intermediate values to store portions of more verbose com-
ponents. More concretely in this model we could create blocks for the different
operating costs used in the objective and reference these blocks at the moment
of its definition.

When comparing with traditional mathematical notation or even other so-
lutions LPBlocks allowed for considerable savings in terms of syntax for the
expression of constraints however we found that due to its complexity the objec-
tive function specification in LPBlocks was similar to the mathematical form.

4.3 Machine allocation

In the problem shown in Figure 9 (taken from [2]) the goal is to maximize a fac-
tory’s profit by allocating the production of different goods among two machines.
In this problem we are given information about each product’s profitability, use
of floor space and manufacturing time in minutes taken by each machine. We are
also given other rolls related to the machines down time, the total floor space
of 50m2, the time of a work week of 35 hours, the ratios of which some prod-
ucts have to be produced relatively to others and that Product 1 can only be
manufactured in the second machine.

In this example we create column variables for each machine taking the
Proudct column as the index as opposed to previous examples where we created
matrix variables. In this we did not create a matrix variable as could be
assumed do to the fact that the values for the machines are not used as index
columns and using them for defining a matrix variable would mandate the
referencing of one of the values for every use of the variable and would offer
nothing in terms of iterability and generalization. In terms of constraints we use
the first constraint to express that the maximum floor space use is of 50m2.
If LPBlocks supported matrices as data input we possibly could express this
constraint in a less verbose manner. In the second constraint we express that
the production of product 2 is the same as 3. In constraints three and four we
take into account the downtime of 5% for machine 1 and 7% for 2 by modeling
that the total running time of each machine must be lower or equal to 95% and
93% of the total work week. The objective aims to maximize the profit and takes
into account that Product 1 can only be manufactured in the second machine.
This is the reason we were not able to use a more generic representation for this
constraint.

Similarly to the previous example we found some benefits in terms of smaller
footprint but since the creation of the model required the use of complex math-
ematical operations it couldn’t make use of most of LPBlocks features.

4.4 Improving LPBlocks

We have specified 7 linear programming models using LPBlocks. Most of these
examples were easily encoded using LPBlocks. However, we found that some im-
provements could be made in terms of usability, this center mainly on providing
support for receiving data in the form of matrices and variables. In testing the



Fig. 9. Machine allocation problem in LPBlocks

language applicability the value of these changes was evident. Despite posing
some challenges in terms of parsing and changes in the context of our applica-
tion, this addition would greatly benefit the writing of less verbose and more
concise programs in LPBlocks. Other features such as using intermediate blocks
could add some benefit to users but come with possible negative impacts when
it comes to ease of use and the creation of correct models.

5 Concluding remarks

In this work we present a language to aid end users defining linear programming
models. With our language, users are forced to create correct programs as the
constructs are based on the inputs of the problems and it possesses numerous
advantages associated with Block-based such as having and forcing strict in-
put, output , next and previous statement data types and having other features
such as imposing the selection of various inputs from lists extracted from input
spreadsheet. However, it is still possible to build models with problems and thus
we intend to include error-handling in the support tool. We will also design and
run empirical evaluations to assess the usability of the language.
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A Examples of the use of LPBlocks

A.1 Cargo allocation

Fig. 10. Cargo allocation



A.2 Shift allocation

Fig. 11. Shift allocation problem



A.3 Terminal manufacture

Fig. 12. Terminal manufacture



A.4 Satellite launching

Fig. 13. Satellite launching
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Abstract—Linear programming is a mathematical optimization
technique used in numerous fields including mathematics, eco-
nomics, and computer science, with numerous industrial contexts,
including solving optimization problems such as planning routes,
allocating resources, and creating schedules. As a result of
its wide breadth of applications, a considerable amount of its
user base is lacking in terms of programming knowledge and
experience and thus often resorts to using graphical software
such as Microsoft Excel. However, despite its popularity amongst
less technical users, the methodologies used by these tools are
often ad-hoc and prone to errors. To counteract this problem
we propose creating a block-based language that allows users
to create linear programming models using data contained
inside spreadsheets. This language will guide the users to write
syntactically and semantically correct programs and thus aid
them in a way that current languages do not.

Index Terms—linear programming, spreadsheets, block-based
languages, end-user programming

I. INTRODUCTION

The versatility of linear programming in specifying all sorts
of problems lends itself useful in many industrial contexts
since many of its users have little to no programming or
technical knowledge. Thus, visual software such as Microsoft
Excel is often the preferred tool when it comes to specifying
and solving this type of problem [5].

However the typical methodologies used when solving those
types of problems using spreadsheet software often come with
underlying problems such as relying on an imprecise process
to feed data from the spreadsheet to the solver as well as the
difficulties in visualizing as a whole the models. During our
research, we found that other tools commonly used by profes-
sionals working with linear programming such as MATLAB
[9] and GAMS [4] either require considerable programming
knowledge or use ad-hoc and error-prone methodologies.

Some projects have used visual languages to tackle aspects
of linear programming, however, the majority of them focus on
the educational and teaching of mathematical aspects of linear
programming [14, 6], and the few existing projects focusing
on the applied side of linear programming tend to be several
decades old and have dated and unappealing interfaces and
do not make use of recent advances in the field of visual
languages and human-centered computing [7, 15].

This work is supported by the national funds through the Portuguese
Funding Agency (FCT - Fundação para a Ciência e a Tecnologia, within
project UIDB/50014/2020).

Numerous projects have applied visual languages to various
areas of computing with the focus on increasing accessibil-
ity to novice and non-technical users as well as teaching.
A considerable amount of these languages use the Blockly
[2] framework for their implementation. Examples include
BlockPy, a web-based platform that lets the user write and run
Python code using a block-based language [1], and Scratch,
a block-based visual programming language and educational
tool targeted at children [8].

Given the potential of Blockly to improve the usability
and practice of linear programming and the extensive study
of block-based languages and their practices [3, 13], we aim
to build upon the work previously done in this field to the
create a visual language and tool capable of expressing linear
programming models in a user-friendly manner.

II. A BLOCK-BASED LANGUAGE FOR LINEAR
PROGRAMMING

In this section, we introduce our proposed language using
an example featured in a Master of business administration
exam (MBA) [10]. The example problem aims to increase the
profit of delivery airplanes. The problem statement provides
values for the weight and space capacity of three different
compartments (front, rear and center) and maximum values
for the weight, volume and profit for four different cargoes
(C1, C2, C3 and C4) as seen in Figure 1.

Fig. 1. Input from our example problem in the specified format

A. Input data

Our solution requires the input data to follow a predefined
structure. This structure allows for the definition of index
columns (as seen highlighted in blue in Figure 1), to reference
values and iterate over the data columns (seen in white in the
same figure). To distinguish between the two we assume that
the data columns addressed by a given index column appear
in the spreadsheet immediately after the said column, and that
the sets of index and data columns are separated by an empty
column as can be seen in the figure. In this case there are two
sets, the first being for the three compartments and the second
for the four types of cargo.978-1-6654-4592-4/21$31.00 @2021 IEEE



Fig. 2. The language constructs are used to build an example model which is used to generate the mathematical format

B. Main language building blocks

The building blocks of a linear programming model seen
in Figure 2.A are the variables, the constraints, and the
objective function. In our language we include two nesting
blocks for the variables and constraints, an objective block
with the option to minimize or maximize a given objective
and an intermediate block for the individual constraints since
constructing the constraints requires the use of several blocks.
To further facilitate this process for novice and inexperienced
users, when building a new linear programming model, the
variables, constraints and objective block are connected when
creating a fresh solution.

C. Defining variables

Users have several options to define variables (Figure 2.B):
• a single variable through its name;
• a column variable defining its name and an index column

for which the variable will be iterated and accessed;
• a matrix variable that take a name and two index columns

for which it can be iterated and the values accessed.
These can then be used through the variable blocks (Fig-

ure 2.B), in different ways. In the example seen in Figure
2.D we use a matrix variable block to create a new N ×M
matrix variable named CompartmentCargo with N being
the length of the column Compartment and M the length
of the column Cargo.

D. Defining constraints

Each constraint is defined by dragging a constraint block
inside the constraints block (second and third blocks from
the top in 2.A) and then using the value blocks (blocks in
2.C) and operation blocks (blocks following the Constraint
Block in 2.E) to express the constraints. In our language,
operation blocks are used to join value and other operation
blocks. This blocks can express several operations including
arithmetic operations and inequalities. The value blocks can
represent columns, previously defined variables, and numbers.
The variables can be accessed using different blocks and
options which influence how the constraints will be generated.
As an example a user can access a matrix variable with a
single slot variable block in Figure 2.E to generate multiple
constraints or use the three slot variable blocks to access a
particular value of the given variable.

The first constraint in Figure 2.E, expressed in natural
language as “one cannot pack more of each of the four
cargoes than one has available” is defined in our language by
using a <= operation block, a variable block with the option
CompartmentCargo and a column block with the option
Weight. Since the constraints block only appears after the
variables block the compiler knows the index values for both
the column and variable used and thus can generate the correct
constraints which in this case are expressed in Figure 2.G.

The second constraint can be expressed in natural language
as “the volume (space) capacity of each compartment must be
respected”. This constraint (the second in 2.E) uses X and <=
operation blocks and value blocks to compile the more com-
plex constraint. For these constraints, our compiler generates
the linear programming constraints featured in Figure 2.H.

E. Defining the objective function

To define the objective function users must fit the objective
block into the constraints block and use several value and
operation blocks to define the function.

In the example seen in Figure 2.G the objective function
is created by using an operation block with value <=, a
column block with option Profit, and a variable block with
the option CompartmentCargo. The objective function
generated by this statement is the one featured in 2.I.

F. User interaction

This language will extend previous work exploring the
creation of spreadsheets through systematic processes [11, 12]
thus increasing the number of operations available. The user
will use the spreadsheet with the linear programming data as
input to a spreadsheet creation process and define the linear
programming model using our language which will use the
spreadsheet as input.

III. CONCLUDING REMARKS

In this work we present a language to aid end users defining
linear programming models. With our language, users are
forced to create correct programs as the constructs are based
on the inputs of the problems. However, it is still possible
to build models with problems and thus we intend to include
error-handling in the support tool. We will also design and run
empirical evaluations to assess the usability of the language.
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